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In these notes, we consider a scalar parabolic equation which is either autonomous
or time dependent. We give a survey of some of the results that deal with the
qualitative properties of the dynamics defined by general equations as well as
specific results for particular equations. Many of the ideas for a scalar equation
have served as a guide to the study of interesting phenomena in systems. We
make some remarks about systems, but space limits a detailed discussion of this
case. The table of contents describes well the essential plan of the notes.

1. Fundamental concepts

If we consider an evolutionary equation in a Banach space X and assume that
the vector field does not depend upon time, then the solution through a point
x ∈ X at time 0 may be represented as T (t)x. If each solution is defined for
all t ≥ 0 and there a unique solution through each point, then the family of
operators T (t), t ≥ 0, satisfies the following properties:

(1.1) T (0) = I, T (t + τ) = T (t)T (τ).

A family of transformations T (t), t ≥ 0, is said to be a semigroup of transfor-
mations or a dynamical system if it satisfies (1.1) and T (t)x is continuous in
t, x. We say that T (t), t ≥ 0, is a Cr-semigroup if it is a semigroup for which
T (t)x is Cr in x.

In many situations, the dynamics of a system is defined by the properties of
the iterate of a map T on X rather than by an evolutionary equation. In this
case, the time is discrete and represented by the integers. We could present
both of these cases together by taking a family of transformations indexed by
a parameter in a group. However, we present only the continuous case to avoid
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additional notation and only remark that analogous concepts and results are
valid for the discrete case.

For any point x ∈ X , we define the positive orbit through x as the set
γ+(x) = ∪t≥0T (t)x. For any set B ⊂ X , we define the positive orbit through
B as the set γ+(B) = ∪x∈Bγ+(x). A set J ⊂ X is said to be invariant if
T (t)J = J for t ≥ 0. Since T (t) maps an invariant set J onto itself, it follows
that, for any point x ∈ J and any t ≥ 0, there is a y ∈ J such that T (t)y = x.
As a consequence, we can define T (−t)x = y and obtain a negative orbit γ−(x)
through x. This corresponds to defining a backward continuation of an orbit
through x if x belongs to an invariant set J . When we can define a negative
orbit through x, we refer to the set γ(x) = ∪t∈lRT (t)x as a globally defined
orbit.

For x ∈ X , we define ω(x), the ω-limit set of x or the ω-limit set of the
orbit through x, as

ω(x) = ∩τ≥0Clγ+(T (τ)x).

This is equivalent to saying that y ∈ ω(x) if and only if there is is a sequence
tn →∞ such that T (tn)x→ y as n→∞. In the same way, for any set B ⊂ X ,
we define ω(B), the ω-limit set of B or the ω-limit set of the orbit through B,
as

ω(B) = ∩τ≥0Clγ+(T (τ)B).

This is equivalent to saying that y ∈ ω(B) if and only if there are sequences
tn →∞, xn ∈ B, such that T (tn)xn → y as n→∞.

We remark that ω(B) may not be ∪x∈Bω(x). In fact, consider the simple
example, ẋ = x − x3 and the set B to be the interval [−2, 2]. Then ω(B) =
[−1, 1] and ∪x∈Bω(x) = {0,±1}.

We say that a set A attracts a set B under T (t) if limt→∞ dist (T (t)B, A) =
0, where dist (B, A) = supx∈B dist (x, A). A basic but very elementary result
is the following

Lemma 1.1. If B ⊂ X and Cl γ+(B) is compact, then ω(B) is compact,
invariant, and ω(B) attracts B. Furthermore, if B is connected, then so is
ω(B).

In the case where X = lRn, the hypotheses of Lemma 1.1 are satisfied if we
only assume that γ+(B) is bounded since the closure of bounded sets in lRn

are compact.
If there is a t0 ≥ 0 such that T (t) is compact for t ≥ t0, then the hypotheses

of Lemma 1.1 also are satisfied if we assume only that γ+(B) is bounded. In
this case, the unit ball in X is not compact if X is infinite dimensional, but this
inconvenience is overcome by the fact that the mapping T (t) is compact for
t ≥ t0. Semigroups which are compact for t ≥ t0 occur in many applications
including, for example, reaction diffusion equations and retarded differential
difference equations.

There are many other applications for which the semigroup is not compact
for any t ≥ 0 and yet the conclusion of Lemma 1.1 is true. This is the case,
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for example, for the wave equation with appropriate dissipation and certain
types of neutral differerntial differential equations. Even though these more
complicated equations are not the primary purpose of these notes, we introduce
the more general class of semigroups for which Lemma 1.1 is true.

Motivated by the fact that T (t)γ+(B) ⊂ γ+(B) for all t ≥ 0 and that
ω(B) attracts B is equivalent to ω(B) attracts γ+(B), we make the following
definition. We say that the semigroup T (t), t ≥ 0 is asymptotically smooth if,
for any bounded set B in X with T (t)B ⊂ B for t ≥ 0, there exists a compact
set J in the closure of B such that J attracts B. The above definition was
introduced by Hale, LaSalle and Slemrod (1972) and is equivalent to the
definition of asymptotically compact introduced by Ladyzenskaya (1987).

We notice that, if T (t) is compact and bounded for t ≥ t0, then T (t), t ≥ 0,
is asymptotically smooth. Also, if

(1.2) T (t) = S(t) + U(t),

where U(t) is compact for t ≥ 0 and there are continuous functions k(r) > 0,
α(r) > 0, r ≥ 0, such that

(1.3) |S(t)x| ≤ k(r)e−α(r)t, t ≥ 0, |x| ≤ r,

then T (t) is asymptotically smooth. For each t > 0, the operator T (t) may
not be compact, but as t → ∞ it becomes compact. The semigroup T (t) also
is asymptotically smooth if there are positive constants k, α and a precompact
pseudo metric ρ(t, ·, ·) such that

|T (t)x− T (t)y| ≤ ke−αt|x− y|+ ρ(t, x, y)

for all t ≥ 0, x, y ∈ X (see Hale (1988)).

Lemma 1.2. If T (t) is asymptotically smooth and γ+(B) is bounded, then the
conclusions of Lemma 1.1 are true.

The next important concepts deal with attractors. A set A is said to be a
minimal global attractor if A is invariant, attracts bounded sets and is minimal
with respect to this property (Ladyzenskaya (1987)). If the global attractor is
compact, we will refer to it as the compact global attractor.

Lemma 1.3. If T (t) is asymptotically smooth and, for each bounded set B,
γ+(B) is bounded, then there exists a minimal global attractor A, it is connected
and is given by

A = Cl ∪B⊂X ω(B).

Contrary to an assertion of Hale and Raugel (Equadiff 1992), the attractor
A may not be locally compact as shown by example of Volera (1997).

For the example ẋ = −εx, ẏ = −y, the minimal global attractor is the x-
axis for ε = 0 and the compact global attractor is the origin for ε > 0. In
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this example, a small dissipation in the x-direction turned the minimal global
attractor into a compact global attractor.

We say that T (t) is point dissipative if there is a bounded set B in X such
that, for any x ∈ X , there is a t0 = t0(x, B) such that T (t)x ∈ B for t ≥ t0.
An equilibrium point of T (t) is a point x such that T (t)x = x for all t ∈ lR. We
denote the set of equilibrium points of T (t) by E.

Theorem 1.1. If T (t) is point dissipative and there is an r ≥ 0 such that T (t)
is compact and bounded for t ≥ r, then there exists the compact global attractor
A and it is connected. Furthermore, if T (t) satisfies (1.2) for t ≥ 0, then the
set E of equilibrium points is nonempty.

Theorem 1.1 can be useful in many situations; in particular, to ordinary differ-
ential equations, reaction diffusion systems and retarded functional differential
equations with finite delay.

For the case where T (t) is asymptotically smooth, we need an additional
condition to ensure the existence of the global attractor.

Theorem 1.2. If T (t) is asymptotically smooth, γ+(B) is bounded if B is
bounded, and T (t) is point dissipative, then there exists the compact global
attractor A and it is connected. Furthermore, if T (t) satisfies (1.2) for t ≥ 0,
then the set E of equilibrium points is nonempty.

Theorem 1.2 can be very useful in the discussion of partial differential equations
for which the family of maps T (t) is a group; for example, the damped wave
equation and the Fitzhugh-Nagumo equation. It also is appropriate for some
neutral functional differential equations and retarded equations with infinite
delay.

Remark 1.1. Theorems 1.1 and 1.2 are valid for discrete dynamical systems
defined by a map T . Of course, the assertion about equilibrium points is re-
placed by fixed points of T . If the discrete dynamical system arises as the
Poincaré map of an evolutionary equation with coefficients periodic in the time
variable, then fixed points of the Poincaré map correspond to periodic solu-
tions of the evolutionary equation of the same period as the vector field. The
existence of a compact global attractor for the Poincaré map then implies the
existence of such a periodic solution.

It is difficult to trace the earliest papers which contained discussions involv-
ing concepts related to global attractors. The idea is very old and the in-
terested reader can consult Babin and Vishik (1991), Hale (1988), Hale,

Magalhães and Oliva (1984), Hale and Verduyn-Lunel (1993), Haraux

(1989), Ladyzenskaya (1987), Témam (1988) and the references therein.
Let c(A) be the capacity of the set A and let dim H(A) be the Hausdorff

dimension of A.
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Theorem 1.3. If X is a Banach space, T (t) : X → X is a C1-semigroup
satisfying (1.2), (1.3), is point dissipative and positive orbits of bounded sets
are bounded, then the compact global attractor A has the following properties:(1)
c(A) <∞.(2) If d = 2c(A)+1 and S is any linear subspace of X with dimS ≥
d, then there is a residual set Π of the space of all continuous projections P of X
onto S (taken with the uniform operator topology) such that P |A is one-to-one
for every P ∈ Π.

For compact maps and X a Hilbert space, Mallet-Paret (1976) proved that
dimH(A) < ∞. The result as stated is due to Mané (1981). Having the
capacity finite implies that the Hausdorff dimension is finite. The second part
of the theorem says that the compact global attractor can be unraveled in a
residual set of directions onto a finite dimensional subspace of large dimension.

The semigroup T (t) is gradient if (i) γ+(x) bounded implies that Cl (γ+(x))
is compact, (ii) There exists a continuous Lyapunov function V : X → lR; that
is, V (T (t)x) is nonincreasing in t for each x and, if V (T (t)x) = V (x) for all
t ∈ lR, then x ∈ E, the set of equilibrium points.

If, in addition, V (x)→∞ as |x| → ∞, then each positive orbit is bounded.
The simplest example of a gradient system is the ODE ẏ = −∇F (y) with

the Lyapunov function V (y) = F (y).
Another interesting example is the parabolic PDE

(1.4)
ut −∆u = f(u) inΩ,

∂u

∂n
= 0 in ∂Ω,

where Ω ⊂ lRn and f is a C1-function satisfying a growth condition which
will ensure that the initial value problem is well defined in H1(Ω). If we let
F (u) = −

∫ u

0 f(s)ds→∞ as |u| → ∞ and V (ϕ) =
∫ 1

0 [12 (∂xϕ)2(x)+F (ϕ(x))]dx,
then V (ϕ)→∞ as |ϕ| → ∞. Also, for smooth initial data,

V̇ (u(t, ·)) = −
∫ 1

0

[∂tu(t, x)]2dx ≤ 0. (1)

A density argument shows that

V (u(t, ·)) = V (u(0, ·))−
∫ t

0

∫ 1

0

[∂tu(τ, x)]2dxdτ.

This equality shows that solutions are defined for all t ≥ 0 and that γ+(ϕ) is
bounded for each ϕ ∈ H1(Ω). The semigroup defined by (1.4) is compact for
t > 0 and therefore each bounded orbit must have a compact, invariant ω-limit
set. Relation (1.5) implies that V is constant on the ω-limit set and also that
ut = 0 for each solution on the ω-limit set. We therefore conclude that V is a
Lyapunov function and (1.4) is gradient.

243



For the linearly damped hyperbolic equation

(1.6)
utt + βut −∆u = f(u) inΩ,

∂u

∂n
= 0 in ∂Ω,

with β > 0 constant and appropriate growth conditions on f , it can be shown
that this system is gradient in H1(Ω) × L2(Ω). The Lyapunov function is
V (ϕ, ψ) =

∫ 1

0 [12 (∂xϕ(x))2 + 1
2ψ2(x) + F (ϕ(x))]dx and

V̇ (u(t, ·), ∂tu(t, ·)) = −
∫ 1

0

[∂tu(t, x)]2dx ≤ 0.

Furthermore, the semigroup generated by (1.6) satisfies (1.2), (1.3). If f is a
compact map from H1(Ω) to L2(Ω), then S(t) is the semigroup generated by
the linear equation (1.6) with f ≡ 0 and is verified by using the variation of
constants formula (see, for example, Hale (1988)). If this map is not compact,
then the construction of the map S(t) is more complicated (see Arrieta,

Carvalho and Hale (1992)).
If T (t) is gradient and there is a compact global attractor A for which each

equilibrium point is hyperbolic, then

A = ∪ϕ∈EWu(ϕ),

where Wu(ϕ) is the unstable manifold of ϕ.
In the applications, it is of interest to know when an orbit of a gradient

system is convergent; that is, when does the ω-limit set ω(ϕ) consist of a single
point in the set E? For each of the systems mentioned above as well as much
more general systems, it is enough to know that there is a ψ ∈ ω(ϕ) with the
property that the linear variational equation about ψ has zero as an eigenvalue
of multiplicity at most one (Hale and Raugel (1992)).

A Morse decomposition for the compact global attractor A is a finite col-
lection {Mi}ki=1 of mutually disjoint compact invariant sets (referred to as the
Morse sets) such that, for any ϕ ∈ A, one of the following possibilities holds:

(1) there exists 1 ≤ i ≤ k such that ω(ϕ) ⊂Mi,
(2) there exist 1 ≤ i < j ≤ k such that α(ϕ) ⊂Mi, ω(ϕ) ⊂Mj.

If we have a Lyapunov function V for a gradient system for which there exists a
compact global attractor and all equilibrium points are hyperbolic, then there
is a simple way to obtain an interesting Morse decomposition. There is an
integer k such that the set V |E = {V1 > V2 > · · · > Vk} for some constants Vi.
The set Mi can be chosen as Mi = {ϕ : V (ϕ) = Vi}.

Another important concept in dynamical systems is a Morse-Smale system.
We define this only for a discrete dynamical system π since it is all that is
needed in the text. A point ϕ ∈ X is said to be a nonwandering point of π
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if, for any neighborhood U of ϕ and any nonnegative integer N , there exist a
ψ ∈ U and an n ≥ N such that πnψ ∈ U . Following Oliva (see Hale, Mag-

alhães and Oliva (1984)), we say that the discrete dynamical system defined
by π is Morse-Smale if there is a compact global attractor Aπ of π, π|Aπ and
its derivative are injective, the nonwandering set consists of a finite number
of hyperbolic periodic points and their stable and unstable manifolds intersect
transversally. Morse-Smale systems are structurally stable when restricted to
the attractor; that is, there is a neighborhood U of π in the C1-Whitney topol-
ogy such that, for any π̃ ∈ U , there is a homeomorphism h : Aπ → Aπ̃ which
takes orbits of π to orbits of π̃ and preserves the sense of direction in discrete
time.

2. Autonomous - separated boundary conditions

2.1. Gradient structure
In this section, we consider the equation

(2.1.1) ut = uxx + f(x, u, ux) in Ω = (0, 1),

with the boundary conditions

(2.1.2) αux + βu|x=0 = 0 = γux + δux|x=1,

where α, β, γ, δ are constants which can be normalized so that α2 + β2 = 1 =
γ2 + δ2. The function f is assumed to be C2.

We assume that there is an s such that (2.1.1), (2.1.2) defines a local semi-
group T (t) on Hs(0, 1) and that, if B is a bounded set in Hs(0, 1), then the
closure of T (t)B is compact if t > 0. If f is independent of ux and is a C2-
function, we can take s = 1. If f depends upon ux, s depends on the growth
rate of ux for large ux. If the growth rate is less than cubic, then we can take
s = 2.

We also suppose that the solutions of the initial value problem for the
ordinary differential equation

(2.1.3) y′′ = f(x, y, y′), y(x0) = y0, y′(x0) = y′0,

are defined for 0 ≤ x ≤ 1, 0 ≤ x0 ≤ 1, y0 ∈ lR, y′0 ∈ lR.
The following result is due to Zelenyak (1968). Matano (1978) also

proved the same result for the special case when f = f(x, u) does not depend
upon ux.

Theorem 2.1.1. System (2.1.1) is gradient. Furthermore, if γ+(ϕ) is a
bounded orbit, then ω(ϕ) is a singleton.

Zelenyak (1968) actually proved this result for a more general system and
even allowed nonlinear boundary conditions. The more general system is given
explicitly as

(2.1.4) ut = a(x, u, ux)uxx + f(x, u, ux) in Ω = (0, 1),
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with the boundary conditions

(2.1.5) α(ux + ϕ(u)) + βu|x=0 = 0 = γ(ux + ψ(u)) + δux|x=1,

where α, β, γ, δ are constants which can be normalized so that α2 + β2 = 1 =
γ2 + δ2, there is a constant a0 > 0 such that a(x, u, ux) ≥ a0 and the functions
a, f, ϕ, ψ are C3. Of course, it is necessary also to assume the solutions of the
initial value problem for the ordinary differential equation

(2.1.6) a(x, y, y′)y′′ = f(x, y, y′), y(x0) = y0, y′(x0) = y′0,

are defined for 0 ≤ x ≤ 1, 0 ≤ x0 ≤ 1, y0 ∈ lR, y′0 ∈ lR.
The first step of the proof is to show that there is a Lyapunov function for

(2.1.1).

Lemma 2.1.1. There exist C2 functions ρ(x, ξ, η) > 0, Φ(x, ξ, η) such that, if

(2.1.7) V (ϕ) = −
∫ 1

0

Φ(x, u, ux)dx,

and u(t, x) is a solution of (2.1.1), (2.1.2), then

(2.1.8) V (u(t)) = V (u(0))−
∫ t

0

∫ 1

0

ρ(x, u, ux)[uτ ]2dxdτ.

The proof of this result is rather technical but the idea is to assume that
(2.1.8) is satisfied, formally differentiate to obtain a partial differential equation
involving Φ and ρ and show that the resulting equation has a solution of the
type described in the lemma.

If we now assume that γ+(ϕ) is bounded, then it is compact and has an
ω-limit set ω(ϕ). Since V (u(t)) is nonincreasing in t, the function V will be
constant on ω(ϕ) and therefore (2.1.8) implies that we must have ut = 0 on
ω(ϕ); that is, ω(ϕ) ⊂ E, the set of equilibrium points.

To show that ω(ϕ) is a singleton in E, we can use the general result of
Hale and Raugel (1992) mentioned in Chapter 1. In fact, it follows from the
Sturm-Liouville theory that the eigenvalues of the linear variational equation
about an equilibrium point are simple. In particular, if 0 is an eigenvalue, then
it must be simple and the general theorem of Hale and Raugel (1992) on
convergence applies.

Remark 2.1.1. Suppose that Ω ⊂ lRn is a bounded domain with smooth
boundary and consider the system

(2.1.9)
ut −∆u = f(x, u,∇u) inΩ,

αu + β
∂u

∂x
= 0 in ∂Ω.

In general, system (2.1.9) is not gradient. On the other hand, if the ω-
limit set ω(ϕ) of an orbit contains only equilibrium points and there is a point
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ψ ∈ ω(ϕ) which is linearly stable, then ω(ϕ) is a singleton. This follows from
the convergence result of Hale and Raugel (1992) since the linear variational
equation about ψ has the eigenvalue with maximum real part simple and real.
Since we assume linear stability of ψ, it follows that, if 0 is an eigenvalue, it
must be simple.

System (2.1.9) satisfies a maximum principle. As a consequence, the solu-
tion operator is strongly monotone and it follows that most bounded orbits have
ω-limit sets which consist of precisely one equilibrium point and it is linearly
stable (see Smith (1995) for precise statements and historical references). On
the other hand, there exist f(x, u,∇u) such that equation (2.1.9) has chaotic
solutions (Poláčik (1991),(1995), Poláčik and Rybakowski (1995)). These
motions will be unstable but they do exist. If f = f(x, u), this system is a
gradient system (see, for example, Matano (1979)) and therefore the ω-limit
set of any bounded orbit belongs to the set of equilibrium points. However,
there exists a function f(x, u) such that, for Ω the unit ball in lR2, there is
an orbit whose ω-limit set is a complete circle of equilibrium points (Poláčik

and Rybakowski (1996)). Of course, this set of equilibrium points must be
unstable.

As a consequence of the fact that the solution operator of (2.1.1), (2.1.2) is
compact for t > 0 and that the system is gradient, we have the following result.

Theorem 2.1.2. If system (2.1.1), (2.1.2) is point dissipative, then there
exists a compact global attractor A. If, in addition, the equilibrium points are
hyperbolic, then

A = ∪ϕ∈EWu(ϕ).

2.2. Transversality of stable and unstable manifolds
Suppose that (2.1.1) has a compact global attractor. Since (2.1.1) is a gradient
system, the flow on the attractor is Morse-Smale and thus structurally stable if
the equilibrium points are hyperbolic and the stable and unstable manifolds are
transversal (Hale, Magalhães and Oliva (1984)). The following rather surprising
result is due to Henry (1985), Angenent (1986).

Theorem 2.2.1. If ϕ, ψ are hyperbolic equilibria of (2.1.1), then Wu(ϕ) is
transversal to W s(ψ) for every function f ; that is, system (2.1.1) is Morse-
Smale and thus structurally stable if and only if the equilibrium points are
hyperbolic.

Remark 2.2.1. It is natural to enquire if the system (2.1.1) in several space
variables also satisfies the property that stable and unstable manifolds of hy-
perbolic equilibrium points intersect transversally. Unfortunately, this is not
true. For the unit ball in lR2, Poláčik (1994) has shown that there is a func-
tion f = f(x, u) for which transversality does not hold for the corresponding
parabolic equation. Also, in this same class of functions f(x, u), Brunovsky
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and Poláčik (1995) have shown that generically (2.1.9) is a Morse-Smale sys-
tem. It is not known if these same remarks hold if f = f(u) does not depend
upon x.

The proof of Theorem 2.2.1 involves several basic properties of the solutions of
(2.1.1). For any function v(t, x), t ∈ lR, x ∈ (0, 1), let z(v(t, ·)) be the number of
zeros of v(t, x) in (0, 1). An easy application of the maximum principle and the
Jordan curve theorem yields the following result of Nickel (1962), Matano

(1982).

Lemma 2.2.1. If a(t, x), b(t, x), c(t, x) are continuous functions for t ∈ lR,
x ∈ [0, 1], and v(t, x) is a solution of

(2.2.1) vt = vxx + a(t, x)v + b(t, x)vx + c(t, x)

with the homogeneous boundary condition (2.1.2), then z(v(t, ·)) is a nonin-
creasing function of t.

This property together with the Sturm-Liouville theory puts strong restrictions
upon equilibria if there is an orbit connecting them. The precise statement is

Lemma 2.2.2. If ϕ, ψ are hyperbolic equilibria of (2.1.1), (2.1.2), and there is
an orbit γ through a point η0 with α(η0) = ϕ and ω(η0) = ψ, then dimWu(ϕ) >
dimWu(ψ).

The idea for the proof of Lemma 2.2.1 is the following. If η(t) is a solution of
(2.1.1) with α(η) = ϕ, ω(η) = ψ, then the linear variational equation around
η is a linear equation of the form (2.2.1) with the coefficients converging ex-
ponentially as t → +∞ (resp. t → −∞) to the linear variational equation
about ψ (resp. ϕ). As a consequence of this fact and the fact that no solution
of (2.2.1) can approach zero faster than any exponential, it is to be expected
that the zero number z(ηt) of ηt should be at least the number of zeros of the
eigenfunction corresponding to the largest eigenvalue of the linear variational
equation about ψ which, by the Sturm-Liouville theory, is at least dim Wu(ψ).
By the same reasoning, for large negative t, z(η) should be no more that dim
Wu(ϕ)− 1. Therefore, Lemma 2.2.1 implies that dim Wu(ϕ) > dim Wu(ψ).

To complete the proof of Theorem 2.2.1, one uses the characterization of
TW s(ψ) as those functions which are orthogonal to the solutions of the adjoint
linear equation

(2.2.2) wt = −wxx − a(−t, x)w − b(−t, x)wx − c(−t, x)

which approach TWu(ϕ) as t → ∞. If Wu(ϕ) is not transversal to W s(ψ),
then there is a solution of (2.2.2) which approaches zero as t→ ±∞. One now
proves that Lemma 2.2.2 is valid for (2.2.2) and deduces that dimWu(ϕ) <
dimW s(ψ) which is a contradiction.

248



Lemma 2.2.2 allows one to give an interesting Morse decomposition of the
attractor A in the situation where all equilibrium points are hyperbolic. In
fact, if we let

SN = {ϕ ∈ E : dimWu(ϕ) = N},
then Theorem 2.1.1 implies that the α- and ω-limit set of any orbit must be
an element of ∪NSN . Lemma 2.2.2 implies that N for the α-limit set is larger
than N for the ω-limit set. This is equivalent to saying that the invariant
sets {SN , N = 0, 1, 2, . . .} form a Morse decomposition of the attractor A. To
understand more about the nature of the flow on the attractor, it is necessary
to understand the connecting orbits between these Morse sets.

In the special case of the Chafee-Infante problem,

ut = ε2uxx + u− u3 in (0, 1),

with homogeneous Neumann boundary conditions, Chafee and Infante (1974)
discussed the bifurcation of equilibria as a function of ε > 0 and Henry (1985)
has given a complete characterization of the attractor Aε for each ε > 0. The
equilibrium points ±1 are stable for all ε and the equilibrium point 0 is unstable
for all ε with its index i(0) = iε(0) (the dimension of the unstable manifold)
depending upon ε. Let ϕ+

0 (resp. ϕ−0 ) denote the constant function 1 (resp.
−1). At each point εn = (nπ)−1, n = 1, 2, . . ., there is pitchfork bifurcation
from the origin to equilibrium points ϕ+

n , ϕ−n with ϕ+
n (x) = −ϕ−(−x) having

n zeros in (0,1). The equilibria ϕ±n persist for ε < εn and have index n. In
the interval (εn+1, εn), there are exactly 2n + 1 equilibrium points, they all
are hyperbolic and i(0) = n. For ε ∈ (ε1,∞), i(0) = 1, and Aε consists of
the constant functions {−1, 0, 1} together with Wu(0). For ε ∈ (εn+1, εn),
Aε = ClWu(0) and, for any 1 ≤ k ≤ n, there is an orbit connecting ϕk to ϕ+

j

(resp. ϕ−j ) (that is, an orbit whose α-limit set is ϕk and whose ω-limit set is ϕj

(resp. ϕ−j )) for any j < k. The proof of these results uses the transversality of
stable and unstable manifolds even at the bifurcation points. For a proof and
a more detailed description of the attractor, see Henry (1985).

In a later section, we will give a constructive way to conclude that there is
a connecting orbit between two hyperbolic equilibrium points ϕ, ψ.

Remark 2.2. Slow motion For the Chafee-Infante problem, we have described
the flow on the attractor and have seen that there are only two stable equilib-
rium points ±1 for all ε > 0 and that the dimension of the attractor approaches
infinity as ε→ 0. If we start with initial data ϕ, then the solution u(t) through
ϕ will follow the following scenario. It will first come to a small neighborhood
of the attractor and therefore to a small neighborhood of the unstable man-
ifold of some equilibrium point. It will follow this unstable manifold until it
comes to a small neighborhood of another unstable manifold and continue this
process until it comes to a small neighborhood of one of the stable points ±1.
Numerical integration of the equation should follow this pattern. If ε is very
small, one observes often that it is impossible to compute long enough to reach

249



the stable points. More precisely, one observes that the solution reaches a state
which has transition layers through zero and it remains in this state no matter
how long the machine is allowed to run. The explanation for this is that the
flow on the unstable manifolds of equilibrium points moves at a rate which is
exponentially small as ε → 0. A detailed discussion of this point involves a
very delicate application of asymptotic analysis and invariant manifold theory
and details can be found in Carr and Pego (1989), (1990), Fusco and Hale

(1989), Fusco (1990). More general results are in Pinto (1995). The ideas
used in the analysis of these one dimensional problems also are useful in the
discussion of slow motion of interfaces that occur in the Cahn-Hillard equa-
tion in a two dimensional domain (see Alikakos, Bates and Fusco (1991),
Alikakos and Fusco (1992)).

It is interesting to study the transversality property for spatial discretiza-
tion of the parabolic system. From this motivation, Fusco and Oliva (1988)
showed that stable and unstable manifolds of hyperbolic equilibria are transver-
sal for a very general class of ODE. We first state their general result and then
relate it to spatial discretization.

Definition 2.2.1. A bounded linear operator on lRn is said to a positive Jacobi
operator if there is a set e = {ei, 1 ≤ i ≤ n} of basis vectors of lRn such that
the matrix representation A = (aij) in this basis is a positive Jacobi matrix;
that is, aij = 0 for |i− j| > 1 and aij > 0 if |i− j| = 1. We denote the set of
all positive Jacobi matrices relative to the basis e by J (e).

The following result is due to Fusco and Oliva (1988).

Theorem 2.2.2. Suppose that f : U ⊂ lRn → lRn, U open, is a C2-function
and there is a basis e = {ei, 1 ≤ i ≤ n} in lRn such that, for all z ∈ U , the
derivative f ′(z) ∈ J (e). If z−, z+ are hyperbolic equilibrium points of the ODE

(2.2.3) ż = f(z)

with the property that there is an orbit connecting z− to z+, then Wu(z−) is
transversal to W s(z+).

An example of a function f with the property that f ′(z) ∈ J (e) is the following:
(2.2.4)

f1(z1, z2) = a1(z1) + b2z2,
fj(zj−1, zj , zj+1) = aj(zj) + cj−1zj−1 + bj+1zj+1, 2 ≤ j ≤ n− 1,
fn(zn−1, zn) = an(zn) + cn−1zn−1,

where the aj , 1 ≤ j ≤ n, are C2-functions and the cj , bj+1, 1 ≤ j ≤ n− 1, are
positive constants.

Let us consider the partial differential equation

(2.2.5) ut = uxx + f(u) in (0, 1)
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with say homogeneous Neumann boundary conditions. If we take an n point
uniform discretization of (0, 1) and let zj = u(j/(n + 1), t), then we obtain a
system of the form (2.2.4) with aj(s) = f(s) for all s and all of the cj , bj+1

equal to (n + 1)2. Therefore, Theorem 2.2.2 applies to this example and we
have transversality of stable and unstable manifolds of hyperbolic equilibria.

If the function f in (2.2.5) depends upon x; that is, f = f(x, u), then the
transversality still holds for the discretized system since the constants in (2.2.4)
remain the same and the functions aj(s) = f(j/(n + 1), s). If we replace the
diffusion term by (b2ux)x with b2 > 0 and continuous, then the same remark
applies except now the positive constants off the diagonal may be different.

If we suppose that f in (2.2.5) depends upon ux; that is, f = f(u, ux),
and make the same type of spatial discretization, then the term ux leads to
some additional off diagonal terms (of course, on the tridiagonals). To keep the
corresponding ODE so that the derivative belongs to J (e) with the same basis
e, some limitations need to be imposed upon the size of the discretization. If
we suppose that |fv(u, v)| ≤M for all u, v, then it is sufficient to consider step
sizes corresponding to n > M (Rocha (1994)).

In the proof of Theorem 2.2.2, a basic role is played by the number of sign
changes in the components of the n-dimensional vector z, which is the analogue
of the zero number of solutions of the PDE.

We say that a set M is an inertial manifold of (2.1.1), (2.1.2) if it con-
tains the global attractor and is positively invariant under the flow. If we
assume hyperbolicity of equilibria and point dissipativeness, then dimA =
maxϕ∈E{index (ϕ)}.

Theorem 2.2.2. If (2.1.1), (2.1.2) is point dissipative and the equilibria are
hyperbolic, then there is a C1 inertial manifold of minimal dimension and it is
a graph over the linearized unstable manifold of maximal dimension.

For the case where f = f(u) = u − u3, Jolly (1989) proved the existence,
Brunovsky (1989) proved the complete result for general f(u) and Rocha

(1991) allowed the dependence on the gradient.

2.3. Stable solutions with variable diffusion
In this section, we consider a scalar equation for wnich the reaction term in-
volves no gradient terms and the diffusion coefficient depends upon the spatial
variable. Our objective is to characterize those diffusion coefficients for which
the only stable equilibrium solutions will be spatially independent.

We begin with the discussion of the first eigenvalue of the linear variational
operator of an equilibrium point; namely, the elliptic nonlinear equation

(2.3.1) (b2(x)ux)x + f(u) = 0 in (0, 1),

where b(x) > 0 for all x and the function u is required to satisfy the Neumann
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boundary condition

(2.3.2) ux(0) = ux(1) = 0.

The space of initial data is taken to be H1((0, 1)).
Suppose that v is a solution of (2.3.1), (2.3.2) and let λ1(v, b, f) be the first

eigenvalue of the linear variational operator

L ≡ − ∂

∂x
(b2 ∂

∂x
)− f ′(v)

on H1((0, 1). Then λ1(v, b, f) is simple and there is an eigenfunction which is
positive on (0, 1).

Equation (2.3.1) arises in a natural way as the equilibrium points of a scalar
reaction diffusion

(2.3.3) ut = (b2(x)ux)x + f(u) in (0, 1),

or the linearly damped hyperbolic equation

(2.3.4) utt + βut = (b2(x)ux)x + f(u) in (0, 1),

with homogeneous Neumann boundary conditions, where β > 0 is constant.
It represents the equation for the equilibrium solutions. These systems are
gradient with the energy functionals

(2.3.5)
V (ϕ) =

∫ 1

0

{1
2
b2[ϕx]2 + F (ϕ)}dx

V (ϕ, ψ) =
∫ 1

0

{1
2
b2[ϕx]2 +

1
2
ψ2 + F (ϕ)}dx

where F (u) = −
∫ u

0 f(s)ds.
The following result of Yanagida (1982) is a definitive statement on the role

that the diffusion coefficient has on the first eigenvalue of the linear variational
operator about an equilibrium. The first part of the theorem for the case where
b(x) is independent of x is due to Chafee (1975).

Theorem 2.3.1. If b is a C2-function, then the following statements hold:

(i) If b′′(x) ≤ 0 for all x and v is a nonconstant solution of (2.3.1), (2.3.2),
then λ1(v, b, f) < 0.

(ii) If there is an x0 ∈ (0, 1) such that b′′(x0) > 0, then there is a C2-
function f such that (2.3.1), (2.3.2) has a nonconstant solution v such
that λ1(v, b, f) > 0.

The proof of the first part of the theorem uses the characterization of the
first eigenvalue as the minimum of the functional H defined by

H(ϕ) =
∫ 1

0

[b2ϕ2
x − f ′(v)ϕ2] dx
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over functions in H1(0, 1) with L2-norm equal to one.

To show that λ1 < 0 if v is not a constant function, we show, following Chipot

and Hale (1983), that H(bvx) < 0 if v is not a constant function. Let us
compute the first term in the expression for H(bvx).∫ 1

0

f ′(v)(bvx)2 =
∫ 1

0

f ′(v)vxb2vx =
∫ 1

0

[f(v]xb2vx = −
∫ 1

0

f(v)(b2vx)x

=
∫ 1

0

[(b2vx)x]2 =
∫ 1

0

[b(bvx)x + bx(bvx)]2.

Therefore,

H(bvx) = −
∫ 1

0

(bxbvx)2 + bbx · 2bvx(bvx)x = −
∫ 1

0

(bxbvx)2 + bbx[(bvx)2]x

=
∫ 1

0

[−(bxbvx)2 + (bbx)x(bvx)2] =
∫ 1

0

[−b2
x + (bbx)x](bvx)2

=
∫ 1

0

bbxx(bvx)2 ≤ 0.

If λ1 ≥ 0, then the definition of λ1 and the fact that H(bvx) ≤ 0 imply that
H(bvx) = 0 and thus λ1 = 0. If ϕ1 is an eigenfunction corresponding to λ1, then
the fact that λ1 is simple and H(bvx) = 0 allow us to conclude that there is a
constant c such that bvx = cϕ1. If c 6= 0, then vx = 0 at x = 0, x = 1, and b 6= 0
imply that we must have ϕ1 = 0 at x = 0. Since ϕ1x = 0 at x = 0, we would
have that ϕ1(x) = 0 for all x from uniqueness of the initial value problem in
the ODE Lu = 0. This contradicts the fact that ϕ1 is an eigenfunction. Thus,
c = 0, bvx = 0 and vx = 0 which implies that v is a constant function.

The proof of the second part is more complicated. The idea is to construct
a monotonically increasing function v which satisfies the boundary conditions
and then construct a function f so that v is a solution of (2.3.1). This in done
in such a way that the function f has a constant negative derivative −B outside
some interval (−α, α) and then choose the constant B very large to ensure that
v is stable. We refer to Yanagida (1982) for the details.

Remark 2.3.1. The first part of Theorem 2.3.1 remains true for the system

−∆u = f(u,∇u) in Ω

∂u

∂n
= 0 in ∂Ω

provided that Ω ⊂ lRN is convex and has a smooth boundary. More precisely,
the first eigenvalue of the linear variational operator around a solution v of the
equation is negative if v is nonconstant. In case f does not depend upon the
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gradient, this result is due to Casten and Holland (1978), Matano (1979)
and the proof is very similar to the one given for the one dimensional case.
The general case using gradient terms is due to Hess (1987) and the proof uses
PDE arguments and especially the maximum principle.

For other boundary conditions, we have the following result.

Theorem 2.3.2. Consider the equation (2.3.1) with the mixed boundary con-
ditions

α0ux(0) + (1− α0)u(0) = 0

α1ux(1) + (1− α1)u(1) = 0

with α0, α1 being constants. If b′′ ≤ 0 and v is a nonconstant equilibrium
solution such that vx = 0 at two points in [0, 1], then λ1(v, b, f) < 0.

The proof is elementary. Let vx = 0 at the points α, β with α < β. Then
v is a nonconstant solution of the Neumann problem on (α, β) and the first
eigenvalue of the linear variational operator must be positive. By the variational
characterization of the first eigenvalue of the linear variational operator for the
solution of the mixed problem, it also must be positive.

Theorem 2.3.3. Consider either equation (2.3.3) or (2.3.4) with homogeneous
Neumann boundary conditions (2.3.2). If b is a C2-function, then the following
statements hold:

(i) If b′′(x) ≤ 0 for all x, then a stable equilibrium point must be spatially
independent.

(ii) If there is an x0 ∈ (0, 1) such that b′′(x0) > 0, then there is a C2-function
f such that there is a stable equilibrium point which is spatially dependent.

For (2.3.3), this is an obvious consequence of Theorem 2.3.1. For (2.3.4),
the linear variational equation about v has the eigenvalues µ satisfying the
equation µ2 + βµ + λ1(b, v, f) = 0. The quadratic formula and Theorem 2.3.1
imply the result.

Of course, we can make a similar statement for the mixed boundary con-
ditions concerning the instability of any equilibrium point v of (2.3.3), (2.3.4)
such that vx = 0 at two points in [0, 1].

We emphasize that the instability of nonconstant equilibrium points holds
for every function f . On the other hand, the existence of a stable nonconstant
solution when b′′(x0 > 0 involves the construction of a special f . It is not to
be expected that one can find a stable nonconstant solution for every f . In
fact, suppose that b(x) = 1 for all x and the equilibria of (2.3.3), (2.3.4) are
hyperbolic and there is a compact global attractor. Then there will be no stable
nonconstant equilibria of (2.3.3), (2.3.4) if the diffusion coefficient is very close
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to one in the C0-topology. This remark is a consequence of the fact that the
equilibrium points are continuous with respect to b.

Matano (1979) observed that it was possible to find a C0-function b and
a C2-function f such that (2.3.3) has a stable nonconstant equilibrium. His
proof of this fact used the parabolic structure of the equation. We sketch the
idea and give more details in a more general context in Section 2.5. Suppose
that f(u) = u−u3. For given 0 < x0 < x1 < 1, let b(x) be very close to 1 on the
intervals (0, x0) and (x1, 1) and very close to 0 on (x0, x1). Since 1 and −1 are
stable equilibria for (2.3.3), (2.3.2) with this b and f , we expect that there is a
stable equilibrium which is close to 1 on (0, x0) and close to −1 on (x1, 1). This
is proved by showing that there is an upper solution ū and a lower solution u
such that ū < 0 on (x1, 1) and u > 0 on (0, x0). The region [u, ū] is positively
invariant under the flow. A general result of Matano (1979) implies that such
a region must contain a stable equilibrium. It is obviously nonconstant.

Remark 2.3.2. As a consequence of Remark 2.3.1, equation (2.1.1) on a
bounded convex domain Ω ⊂ lRn with Neumann boundary conditions has the
property that the only stable equilibrium points must be spatially independent.
If the domain is not convex, then Matano (1979), using the theory outlined
in Section 2.5, has given an example of a domain Ω and a nonlinear function
f(u) for which there is a stable nonconstant equilibrium. The idea is similar
to the construction above taking a domain which is dumbbell shape with a
thin channel and a function f(u) which is bistable. Space prevents a detailed
discussion of problems of this type. The reader should consult Ciuperca

(1996), Hale and Vegas (1984), Morita (1990), S. Oliva (1995) and the
references therein as well as Mathemataical Reviews.

In the applications, the equation for the equilibrium solutions of the evolu-
tionary PDE may have a form which is different from but equivalent to (2.3.1),
(2.3.2). For example, let us consider the equation

(2.3.6) ut −∆u = f(u) on Ωε

with homogeneous Neumann boundary conditions, where Ωε = (x, y) : x =
εg(x), x ∈ (0, 1)}, ε > 0 is a small real parameter, g > 0 is a C3-function and
f is a C2-function. Hale and Raugel (1992) have shown that the dynamics
on the attractor Aε for ε small is captured by the dynamics on the attractor
of the limit equation on (0, 1):

(2.3.7) ut −
1
g
(g(x)ux)x = f(u) in (0, 1)

with homogeneous Neumann boundary conditions. Without loss of generality,
we can suppose that

∫ 1

0
g(s) ds = 1. If u is any equilibrium point of (2.3.7) and

if we let y =
∫ x

0
g(s) ds, u(x) = v(y) and b(y) = g(x(y)), then ux = bvy and the

function v satisfies the equation (2.3.1). This transformation also preserves the
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boundary condition (2.3.2). After a few calculations, we deduce that

(2.3.8)
b′′(y) = (g(x(y)))2H(x(y)),

H = − (log g)′g′ + g′′ = −g′)2

g
+ g′′.

Applying Theorem 2.3.1 to (2.3.7) yields interesting information about the
effect of domain shape on dynamics. In fact, one can prove the following
unpublished result of Hale and Raugel.

Theorem 2.3.4. If H is defined as in (2.3.8), then the following statements
hold:

(i) If H(x) ≤ 0, 0 ≤ x ≤ 1, and the zeros of f are simple, then there is an
ε0 > 0 such that, for 0 < ε ≤ ε0, any nonconstant equilibrium solution of
(2.3.7) is unstable.

(ii) If there is an x0 ∈ (0, 1) such that H(x0) > 0, then there is a C2-function
f and an ε0 > 0 such that, for 0 < ε ≤ ε0, (3.2.7) has a stable nonconstant
solution.

It also is possible to make other transformations on (2.3.7) to obtain in-
teresting forms for the equations. For example, let us assume (without loss of
generality) that

∫ 1

0
g(s)−1 ds = 1. If we let the function h(y) be determined from

the differential equation h′ = g(h), h(0) = 0, and let x = h(y), u(x) = v(y),
s(y) = g(h(y)), d(y) = s2(y), then

(2.3.9) vyy + d(y)f(v) = 0 in (0, 1).

The boundary conditions (2.3.2) also are preserved. If we let v be a solu-
tion of (2.3.9), (2.3.2) and let λ̃1(v, d, f) be the first eigenvalue of −∂2/∂x2 −
df ′(v) on H1((0, 1)), then, since d = s2, an application of Theorem 2.3.1
implies that λ̃1(v, d, f) < 0 for any nonconstant v provided that −2s′(y) +
[h(y)]−1s(y)s′′(y) ≤ 0 for all y. If this condition is not satisfied at some point,
then then there is an f such that λ̃1(v, s, f) > 0 for some nonconstant solution
of (2.3.9). This implies that there exists a stable nonconstant solution of the
parabolic equation

(2.3.10) vt − vxx = d(x)f(v) in (0, 1),

as well as the linearly damped hyperbolic equation

(2.3.11) vtt + βvt − vxx = d(x)f(v) in (0, 1),

with boundary condition (2.3.2).
We remark that the above transformation applied to (2.3.7) preserves ho-

mogeneous Dirichlet boundary conditions, but mixed boundary conditions are
not preserved unless g(0) = g(1) = 1.
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When we arrive at (2.3.11) from (2.3.7) through special transformations, the
function d is positive. In some applications, the equation (2.3.10) occurs with
d not of fixed sign. We discuss the existence of stable nonconstant equilibria
for such equations in the next section.

Let us now suppose that the diffusion coefficient in (2.3.1) depends upon a
parameter µ ∈ lR; that is, b = bµ. It is of interest to determine how variations in
the diffusion coefficient can lead through bifurcations to a nonconstant solution
vµ of (2.3.1), (2.3.2) with λ1(vµ, bµ, f) > 0 starting for example with b0 = 1. It
is clear that, if c is a constant solution with λ1(c, b0, f) > 0, then λ1(c, bµ, f) >
0 for all µ. This is a consequence of the easily observed fact that λ1(c, b0, f) > 0
implies that f ′(c) < 0. Therefore, any primary bifurcation from a constant
solution of (2.3.1), (2.3.2) must be from a solution v with λ1(vµ, bµ, f) < 0 and
thus is unstable. This implies that the additional stable solutions must arise
either from secondary bifurcations on from saddle node bifurcations. With
enough symmetry on b and f , one can eliminate the consideration of saddle
node bifurcations.

Assuming that f in (2.3.1) is odd, dissipative and has three simple zeros
±1, 0, f ′(u) < f ′(0)u, u ∈ (0, 1], and that b = bµ is even about x = 1/2,
depends continuously upon a parameter µ, bµ is close to the step function b0

which is 1 on [0, 1/2− β] ∪ [1/2 + β, 1] (β < 1/2) and γ on (1/2− β, 1/2 + β)
with γ sufficiently small, Fusco and Hale (1985) have discussed the manner in
which stable nonconstant equilibria may arise through secondary bifurcations
as stated in the following result.

Theorem 2.3.5. Under the above conditions on bµ, f , if ϕµ is an equilibrium
point of (2.3.1), (2.3.2) which is zero for µ = 0 and has exactly k zeros for
µ ∈ (0, 1), depends continuously on µ, and ϕ1 is stable, then there exist numbers
0 < µ1 < µ2 < · · · < µk < 1 such that each µi, i = 1, 2, . . . , k, is a bifurcation
point.

Theorem 2.3.5 says that going through k secondary bifurcations is a necessary
condition in order that an equilibrium point with k zeros becomes stable after it
bifurcates from the zero solution. Fusco and Hale (1985) also show that if, as
µ goes from 0 to 1, an equilibrium point ϕµ experiences exactly k bifurcations
at 0 < µ1 < · · · < µk < 1, each one of which is generic in the sense that, at
any µi, two new solutions bifurcating from µi appear, then u1 is stable. This
observation shows that in a certain sense the converse of Theorem 2.3.5 is true.

Hale and Rocha (1985) have discussed possible bifurcation diagrams in
more detail for the particular case where f(u) = δ(u−u3), δ > 0 constant, and

(2.3.12) b(x) =

{ 1, if 0 ≤ x ≤ γ,

α, if γ < x ≤ 1,

with 0 < α, γ < 1. In this case, they show that there are no stable nonconstant
equilibrium points for any δ. If we were to replace b by a continuous function,
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then Yangida’s Theorem 2.3.3 would imply that there is an f such that there
are stable nonconstant equilibrium points.

If we require that 0 < γ < 1/2 and define b as above on (0, 1/2) and to
be even about 1/2, Hale and Rocha (1985) show that there are exactly two
stable nonconstant equilibrium solutions which bifurcate from zero and become
stable through a secondary bifurcation. For the bifurcation parameter, one can
use α−1δ1/2.

For a domain Ω which is the unit ball, Nascimento (1983), (1990), has a
partial extension of the Theorem 2.3.3. Assuming that the equation has the
form

ut = ∇ · (a(|x|)∇u) + f(u)

with homogeneous Neumann boundary conditions on the unit ball in lRN , he
shows that a stable equilibrium must be radially symmetric. Furthermore, he
gives good estimates on the form of a so that the only stable equilibria are
constants for every function f. Finally, he constructs an (a, f) such that there
exists a stable nonconstant radially symmetric solution.

Remark 2.3.2. Subsidiary conditions of a nonlocal character will automat-
ically change the spatial structure of the solutions v of (2.3.1), (2.3.2) which
have the property that λ1(v, b, f) > 0. For example, if we require in (2.3.1),
(2.3.2) that

(2.3.13)
∫ 1

0

u(t, x) dx = c 6= 0,

where c is a constant not equal to any of the zeros of f , then each solution
must have spatial structure. For b = 1, it is shown in Carr, Gurtin and
Slemrod (1984) that any solution v with λ1(v, b, f) > 0 must be a monotone
nonconstant function if f is the bistable function f(u) = u(u−a)(1−u), 0 < a <
1/2. This implies that the only stable solutions of (2.3.3), (2.3.2), with b = 1,
f(u) = u(u−a)(1−u), 0 < a < 1/2, and satisfying (2.3.13) with c /∈ {0, a, 1} are
monotone and nonconstant. It would be interesting to determine the necessary
and sufficient conditions on b so that this same conclusion is valid for (2.3.3).

For more general results for the equation

ut = uxx + f(u)− α

∫ 1

0

f(u(x, ·))dx,

where α is a constant (α = 1 corresponds to the case just mentioned), see
Freitas (1993).

For the strongly damped nonlinear wave equation

utt + βut − c2uxx − c1uxxt = f(u) x ∈ (0, 1)

with ux = 0 at x = 0, 1, and c1, c2 positive constants, it is easy to check that
nonconstant equilibrium solutions are unstable. What happens when c1, c2 are
spatially dependent or when the spatial derivative terms are given as−(c1ux)x−
(c2uxt)x?
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2.4. Primary bifurcation to stable nonconstant equilibria
In this section, we consider the equation

(2.4.1) ut − uxx = λs(x)f(u), 0 < x < 1

with the Neumann boundary conditions

(2.4.2) ux(0, t) = 0 = ux(1, t)

and λ > 0 a real scalar parameter.
We assume that s is continuous and f is C2. If s(x) > 0 for all x ∈ [0, 1],

then the transformations used in the previous section show that there can be
no primary bifurcation from an equilibrium point corresponding to a zero of f .
We consider in this section the situation when s(x) can change sign in (0, 1)
and is positive on some subinterval of (0, 1). We also assume that

(2.4.3) f(0) = 0 = f(1), f ′(0) > 0, f ′(1) < 0, f ′′(u) < 0, 0 < u < 1.

Equation (2.4.1) with s changing sign is motivated by a selection migration
model introduced by Fisher in population genetics. The existence of stable non-
constant solutions under some conditions on s has been shown by several au-
thors, including Fleming (1975), Hoppenstadt (1975), Fife and Peletier

(1981), Henry (1981), Brown, Lin and Tertikas (1989), Brown and Hess

(1990). Our presentation follows Henry (1981). In the model, u represents the
density of the population, the constant λ is essentially the ratio of the intensity
of selection to the migration rate, s(x) is the local relative selective advantage
if s(x) > 0 and disadvantage if s(x) < 0.

From the maximum principle, it is easy to see that the complete metric
space X of H1(0, 1) consisting of all functions ϕ with values in [0, 1] is positively
invariant under the flow defined by (2.4.1), (2.4.2). Therefore, we can consider
(2.4.1), (2.4.2) as defining a dynamical system on X and having a compact
global attractor A in X . Also, the system is gradient and we let Eλ denote
the set of equilibrium points in X . The points u = 0 and u = 1 are trivial
equilibrium points.

We want to study the dynamics on the attractor A. The average s̄ =∫ 1

0 s(x)dx will play a fundamental role.

Lemma 2.4.1. If s̄ 6= 0, then there is a λ0 > 0 such that Eλ = {0, 1} if
0 < λ ≤ λ0; that is, there are no nontrivial equilibrium points.

The proof is easily supplied by using the method of Lyapunov-Schmidt. In fact,
if P : X → X is the projection which takes ϕ ∈ X to its average ϕ̄ =

∫ 1

0
ϕ, if

ϕ ∈ Eλ, ϕ = ϕ̄ + ψ, then it is easy to see that the equation for ψ:

ψxx = λ(I − P )sf(ϕ̄ + ψ),

with Neumann boundary conditions, has a unique solution ψ(λ, ϕ̄) which is
C1 in λ, ϕ̄ and ψ(0, ϕ̄) = 0. Therefore, ϕ̄ + ψ(λ, ϕ̄) is an equilibrium point of
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(2.4.1), (2.4.2) if and only if
∫ 1

0
s(x)f(ϕ̄ + ψ(λ, ϕ̄(x))dx = 0. For λ = 0, this

implies that f(ϕ̄) = 0 since s̄ 6= 0. The Implicit Function Theorem implies that
0 and 1 are isolated equilibria for λ small and the proof is complete.

The following result is due to Henry (1981).

Theorem 2.4.1. If s̄ < 0 and s > 0 on some interval, then the attractor
for (2.4.1), (2.4.2) on X is a C1-curve which, for λ < λ0, consists of the
two equilibria 0, 1 and an orbit (the unstable manifold of 1) connecting 1 to 0.
For λ > λ0, the attractor consists of the equilibrium points 0, 1 and a spatially
dependent equilibrium point ϕλ together with the unstable manifolds of 0 and
1.

In the proof, it is shown that the point λ0 is a point of primary bifurcation from
the equilibrium point 0. The detailed proof consists in first showing that, for
the largest eigenvalue ζ(λ) of ∂2 + λsf ′(0), there is a unique λ0 > 0 such that
ζ(λ0) = 0, and the corresponding eigenfunction is positive. It is then easily
shown that λ0 is a primary supercritical bifurcation from 0 by using the method
of Lyapunov-Schmidt. It is then shown that there can be no bifurcation from
a nontrivial equilibrium point. From these facts, one deduces the conclusions
in the theorem.

Remark 4.2. The assertions above hold also for equation (2.4.1) with the
Laplacian on a bounded smooth domain Ω ⊂ lRN (see Henry (1981)). For
other related results without assuming the concavity of f , see Brown, Lin

and Tertikas (1989), Brown and Hess (1990).

2.5. Stable equilibrium points
In the first subsection of this section, we give a general method of Matano

(1979) for showing the existence of a stable equilibrium point for a parabolic
partial differential equation. A particular consequence of the method is that
any positively invariant set must contain a stable equilibrium. More abstract
results and ones that are even valid for fixed points of maps are contained in
the literature (see Matano (1984), Hirsch (1988), Dancer and Hess (1991),
Smith (1995)). In the second subsection, we present a general method for de-
termining the index of an hyperbolic equlibrium point in one space dimension.

2.5.1. Existence of stable equilibrium points Let Ω be a bounded domain in lRn

with a smooth boundary ∂Ω and consider the general parabolic equation

(2.5.1) ut = Lu + f(x, u) in Ω

with the boundary conditions

(2.5.2) α(x)u + [1− α(x)]
∂u

∂ν
= β(x) in ∂Ω,
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The functions α, β are C2, 0 ≤ α ≤ 1, the operator L is a second order uniformly
elliptic operator of the form

(Lu)(x) = §ni,j=1

∂

∂xi
[aij(x)

∂

∂xj
u(x)]

with coefficients which are C3 and ∂/∂ν is the unit outward conormal deriva-
tive. The function f(x, u) is in C1

x ∩ C3
u.

It is possible to define a solution of (2.5.1), (2.5.2) on several different spaces.
For the purposes of this section, we take the initial data to be in the space
C(Ω̄). For any ϕ ∈ C(Ω̄), it is possible to prove that there is a solution T (t)ϕ
of the system defined on the interval [0, tmax(ϕ)) and T (0)ϕ = ϕ. Furthermore,
T (t)ϕ ∈ C1(Ω̄) ∩C2(Ω) for t ∈ (0, tmax(ϕ)).

For simplicity in the discussion, we are going to assume that all solutions
are defined on [0,∞). The family of maps T (t), t ≥ 0, forms a C1-semigroup
on C(Ω̄). Also, T (t) is a compact map for t > 0 and, in fact, if B is a bounded
set in C(Ω̄), then T (t) is in a bounded set in C1(Ω̄)∩C2(Ω) for any t > 0 (see,
for example, Matano (1979)).

Associated with (2.5.1), (2.5.2) is the energy functional

V (ϕ) =
∫

Ω

[
1
2
§ni,j=1aij

∂ϕ

∂xi

∂ϕ

∂xj
+ F (x, ϕ)]dx

+
∫

∂Ω

a[
α

2
ϕ2 +

1− α

2
∂ϕ

∂ν
)2 − βϕ]ds,

where
a(s) = [§i{§jaij(s)nj(s)}2]1/2

and (n1, . . . , nn) is the outer normal of ∂Ω and F (x, u) = −
∫ u

0
f . It is not

difficult to show that, if u(t) = T (t)ϕ is a solution of (2.5.1), (2.5.2), then
V̇ (u(t)) = −

∫
Ω
[ut]2dx ≤ 0. If we assume also that F (u) → ∞ as |u| → ∞,

then this latter inequality shows that the system is gradient and that ω(ϕ)
belongs to the set E of equilibrium points; that is, the set of the solutons of
the equation

(2.5.3) Lϕ + f(x, ϕ) = 0

which satisfy the boundary conditions (2.5.2).
To proceed further, we need some notation. Let

C+(ϕ) = {ψ ∈ C(Ω̄) : ψ ≥ ϕ, ψ 6≡ ϕ},
C−(ϕ) = {ψ ∈ C(Ω̄) : ψ ≤ ϕ, ψ 6≡ ϕ},
E+(ϕ) = E ∩ C+(ϕ),

E−(ϕ) = E ∩ C−(ϕ),
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and E is the set of equilibria. On these sets, we introduce the partial order
ψ1 ≥ ψ2 if ψ1(x) ≥ ψ2(x) for x ∈ Ω̄.

We say that an equilibrium point ϕ is unstable upward if there exists an
ε0 > 0 such that, for any δ > 0, there exists a function ψ ∈ C(Ω̄) which
satisfies ϕ(x) ≤ ψ(x) ≤ ϕ(x) + δ for all x ∈ Ω and there exist x0 ∈ Ω and
t0 > 0 such that

(2.5.4) T (t0)ψ(x0) ≥ ϕ(x0) + ε0.

The point ϕ is said to be strongly unstable upward if there exists an ε0 > 0 such
that, for any ψ ∈ C+(v), there is an x0 ∈ Ω and t0 > 0 such that (2.5.4) holds.
Downward instability is defined in a similar way by reversing the inequalities.

One of the main results is the following

Theorem 2.5.1. If ϕ ∈ E is strongly unstable upward and E+(ϕ) 6= ∅, then
there exists a minimum ϕ+ ∈ E+(ϕ); that is, ϕ+ ≤ ψ for all ψ ∈ E+(ϕ).
Moreover, for any ψ ∈ C+(ϕ) ∩ C−(ϕ+), we have ω(ψ) = {ϕ+}.

The main ingredients of the proof of Theorem 2.5.1 are the following lemmas.

Lemma 2.5.1. If ϕ ∈ E is strongly unstable upward, then ϕ is isolated in
E+(ϕ) in the topology of C(Ω̄) and ω(ψ) ∈ E+(ϕ) for any ψ ∈ C+(ϕ).

Lemma 2.5.2. If ϕ ∈ E is strongly unstable upward and E+(ϕ) 6= ∅, then,
for any ϕ1, ϕ2 ∈ E+(ϕ), there exists the greatest lower bound of {ϕ1, ϕ2} in
E+(ϕ).

To state more specific results, we need additional hypotheses on the boundary
conditions.

(H.1) α ≡ 1; that is, Dirichlet conditions.
(H.2) 1− α never vanishes on ∂Ω; that is, Neumann or Robin conditions.

Theorem 2.5.2. If either (H.1) or (H.2) holds and ϕ ∈ E is unstable upward
(resp. downward), then it is strongly unstable upward (resp. downward).

Corollary 5.1. If either (H.1) or (H.2) holds and ϕ ∈ E, then ϕ is stable
from above (that is, not unstable upward) if either of the following conditions
are satisfied:

(1) There is a ψ ∈ C+(ϕ) such that ω(ψ) = ϕ.

(2) infv∈E+(ϕ) v = ϕ.

The proof of Theorem 2.5.2 is a consequence of the smoothness properties
of T (t)ψ in t, ψ, the strong maximum principle and the variation of constants
formula.
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Of course, analogous assertions hold for stability from below.

We give now sufficient conditions for the existence of a stable solution. A
closed set Y ⊂ C1(Ω̄) ∩ C2(Ω) has Property (S) if there exists a family of sets
{Yα}α∈A in C1(Ω̄) ∩ C2(Ω) which satisfies the following proporties:

(1) ∩α∈AYα = Y .
(2) For any α1, α2 ∈ A, there exists an α3 ∈ A such that Yα3 ⊂ Yα1 ∩ Yα2 .
(3) Each Yα is closed in C1(Ω̄) ∩ C2(Ω) and bounded in C(Ω).
(4) Given any w ∈ Y , any α ∈ A and any δ > 0, there exist w1, w2 ∈ C(Ω̄)

and a t0 > 0 such that

w − δ ≤ w1 ≤ w ≤ w2 ≤ w + δ, w1, w2 6≡ w,

and T (t)wi ∈ Yα, i = 1, 2, for t ∈ [t0,∞).

Remark 2.5.1. A set Y is said to be stable if for any neighborhood U ⊂ C(Ω̄)
of Y there is a neighborhood V ⊂ C(Ω̄) of Y such that T (t)V ⊂ U for t ≥ 0.
If Y is a stable set, then it has Property (S). In fact, Y is stable if and only
if, for any neighborhood U ⊂ C(Ω̄) of Y , there is a neighborhood U ′ ⊂ C(Ω̄)
of Y such that T (t)U ′ ⊂ U ′ for t ≥ 0. Therefore, we may take a sequence
of neighborhoods Uα ⊂ C(Ω̄) with Uα1 ⊂ Uα2 if α1 ≥ α2 and choose Yα =
Ūα ∩ (C1(Ω̄) ∩ C2(Ω)).

Remark 2.5.2. Suppose that u− (resp. u+) is a subsolution (resp. supersolu-
tion) of (2.5.1), (2.5.2). Then the order interval [u−, u+] has Property (S).

Theorem 2.5.3. If either (H.1) or (H.2) holds and and Y 6= ∅ satisfies
Property (S), then Y contains at least one stable equilibrium point.

We outline the details of the proof. There is a compact attractor A ⊂ Y and
therefore an element ϕ0 ∈ E ∩A. If Y contains no stable point, then either ϕ0

is unstable upward of unstable downward. Without loss of generality, suppose
that ϕ0 is unstable upward. From Theorem 2.5.2, ϕ0 is strongly unstable
upward.

Let Z be the set of all elements of E ∩Y which are unstable upward. Since
Z can be considered as a partially ordered subset of Y , we can let M be the set
of all the well ordered subsets of Z. We can regard M as a partially ordered
set with respect to the order relation W1 ≤W2 if W1 coincides with a segment
of W2. The set M is inductively ordered and not empty since it contains ϕ0.
By Zorn’s Lemma, there is a maximal element W of M . There are now two
cases to consider.

Case 1. Suppose that W has a largest element ψ. It is first observed that
the boundedness of each Yα implies that the set E+(ψ) will have a minimum
ψ+. Furthermore, it will be stable from below. Since there are no stable points
in Y , we must have ψ+ unstable from above. Therefore, ψ+ belongs to Z and
W ∪ {ψ+} belongs to M. This contradicts the fact that M is maximal.
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Case 2. Suppose that W does not have a largest element. If ψ̂(x) =
supψ∈W ψ(x), then Y bounded in C(Ω̄) implies that ψ̂ is an accumulation
point of W in the topology of C1(Ω̄) ∩C2(Ω) and thus ψ̂ ∈ E. The point ψ̂ is
stable from below and we have ψ̂ ∈ Z since there are no stable points in Y . As
before, this is a contradiction and the theorem is proved.

The following results are consequences of Theorem 2.5.1 and Theorem 2.5.3.

Theorem 2.5.4. If either (H.1) or (H.2) holds and ϕ1, ϕ2 are distinct ele-
ments of E, ϕ1 ≤ ϕ2 on Ω̄ with ϕ1 unstable upward and ϕ2 unstable downward,
then

(1) there is a minimal ϕ3 ∈ E and a maximal ϕ4 ∈ E satisfying ϕ1 ≤ ϕ3 ≤
ϕ ≤ ϕ4 ≤ ϕ2, ϕ1 6≡ ϕ3, ϕ4 6≡ ϕ2, for any ϕ ∈ E ∩ [ϕ1, ϕ2], ϕ 6≡ ϕ1, ϕ2;

(2) there exists at least one stable ϕ ∈ [ϕ1, ϕ2].

Theorem 2.5.5. If either (H.1) or (H.2) holds and ϕ1, ϕ2 ∈ E are distinct,
ϕ1 ≤ ϕ2 with ϕ1being stable from above and ϕ2 being stable from below, then
there is at least one other ϕ ∈ E ∩ [ϕ1, ϕ2].

Theorem 2.5.3 together with Remark 2.5.2 may be used to verify the assertion
in Remark 2.3.2 on the existence of a stable nonconstant equilibrium solution
on a dumbbell shaped domain (see Matano (1979)). Another application is
given in Section 2.6.

2.5.2. The index of equilibria in one space dimension In this section, we con-
sider the elliptic equation

(2.5.5) (b2ux)x + f(x, u) = 0, 0 < x < 1 ,

with the Neumann boundary conditions

(2.5.6) ux(0) = 0 = ux(1) ,

where b > 0 is continuous and f(x, u) is continuous in x, u with continuous
first and second derivatives in u and

(2.5.7) f(x, 0) = 0 .

Let v be a solution of (2.5.5), (2.5.6) and let i(v), the index of v, be the
number of negative eigenvalues of the operator

∂

∂x
(b2 ∂

∂x
) + fu(x, v(x))

with boundary conditions (2.5.6). Our objective in this section is to give a
method for determining i(v) which has been used by Fusco and Hale (1985),
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Hale and Rocha (1985) and Rocha (1985). Similar methods have been used
by Jones (1984) in the study of the stability of traveling waves.

Along with (2.5.5) and (2.5.6), we consider the initail value problem

(2.5.8)
b2ux = v, vx = −f(x, u), 0 < x < 1,

u(0) = u0, v(0) = 0,

where u0 ∈ lR. Let ((u(x, u0), v(x, u0)) be the solution of (2.5.8) and suppose
it is defined on [0, 1] for each u0. The set E of equilibrium solutions of (2.5.5),
(2.5.6) coincides with those solutions of (2.5.8) for which v(1, u0) = 0. If we let
§ ⊂ lR3 be defined by § = {(u(x, u0), v(x, u0), x) : 0 ≤ x ≤ 1, u0 ∈ lR} and let
§x = {(u, v) : (u, v, x) ∈ §} be the cross-section of § at x, then u(·, u0) ∈ E if
and only if

(u(1, u0), v(1, u0)) ⊂ §1 ∩ {(u, 0, 1) ∈ lR3}.
We need also the linear variational equation with respect to u0:

(2.5.9)
b2ηx = µ, µx = −fu(x, u)η, 0 < x < 1,

η(0) = 1, µ(0) = 0.

For the study of the index of an equilibrium point, an important role is
played by the angle t (measured clockwise) that the tangent vector to the
curve §1 makes with the u-axis. The tangent vector to §x is given by

(∂u(x, u0)/∂u0, ∂v(x, u0)/∂u0)

and satisfies the linear variational equation. Therefore, it is natural to introduce
the polar coordinates η = ρ cos t, µ = −ρ sin t in (2.5.9) to obtain the following
equation for the angle t(x, u0) that the tangent vector to §x makes with the
u-axis:

(2.5.10) tx =
sin2 t

b2
+ fu(x, u(x, u0)) cos2 t, t(0, u0) = 0.

This transformation is valid since we have assumed that f(x, 0) = 0 for all x.
For any real number y ∈ (−1,∞), we let [y] be the integer part of y if y ≥ 0

and be −1 if y < 0.

Theorem 2.5.6. Let θ(u0) = t(1, u0), where t is the solution of (2.5.10). Then

(1) θ : lR→ (−π/2,∞).
(2) An equilibrium point u = u(·, u0) is hyperbolic if and only if θ(u0) 6= kπ for

any integer k ≥ 0; that is, the curve §1 is transversal to {(u, 0, 1) ∈ lR3} at
u0.

(3) If u(·, u0) is an hyperbolic equilibrium and Wu(u0) is the unstable manifold
of u, then dimWu(u0) = 1 + [θ(u0)/π].
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For the proof, note that tx is positive for t = (k − 1/2)π, where k ≥ 0 is an
integer. Therefore, t(0, u0) = 0 implies that t can never attain the value −π/2
and the range of θ must be in (π/2,∞).

If u is an equilibrium point, then the corresponding eigenvalue problem is

(b2wx)x + f ′(x, u)w = λw, x ∈ (0, 1),

with the boundary conditions wx = 0 at x = 0, 1. If we let

w = η cos ξ, b2wx = −η sin ξ,

then λ is an eigenvalue if and only if ξ satisfies the equation

(2.5.11) ξx = sin2 ξ
b2 + [fu(x, u(x, u0))− λ] cos2 ξ, x ∈ (0, 1),

ξ(0) = 0, ξ(1) = kπ for some integer k ≥ 0.

For λ = 0, this is the equation for tx and we immediately deduce (2).
To prove (3), let ξ(x, λ) be the solution of (2.5.11) with ξ(0) = 0. Note that

ξ(1, λ) is strictly decreasing in λ, ξ(1, λ) → −π/2 as λ →∞ and ξ(1, λ) →∞
as λ→ −∞. Also, note that ξ(1, 0) = θ(u0) and that λ is an eigenvalue if and
only if ξ(1, λ) = kπ for some integer k ≥ 0. Since dimWu(u0) is the number
of positive eigenvalues of the linear variational operator, this gives the proof of
(3). The proof of the theorem is complete.

Remark 2.5.3. An equilibrium point of (2.5.5), (2.5.6) is hyperbolic and stable
if and only if θ(u0) < 0.

It also is possible to obtain a characterization of the equilibrium points
by the consideration of an initial value problem at x = 1 and integrating
backwards. In fact, consider the initial value problem

(2.5.12)
b2ux = v, vx = −f(x, u), 0 < x < 1,
u(1) = u0, v(1) = 0,

where u0 ∈ lR. Let ((ū(x, u0), v̄(x, u0)) be the solution of (2.5.12) and suppose
it is defined on [0, 1] for each u0. The set E of equilibrium solutions of (2.5.5),
(2.5.6) coincides with those solutions of (2.5.8) for which v̄(0, u0) = 0. If we let
§̄ ⊂ lR3 be defined by §̄ = {(ū(x, u0), v̄(x, u0), x) : 0 ≤ x ≤ 1, u0 ∈ lR} and let
§̄x = {(ū, v̄) : (ū, v̄, x) ∈ §} be the cross-section of §̄ at x, then ū(·, u0) ∈ E if
and only if

(ū(1, u0), v̄(1, u0)) ⊂ §̄1 ∩ {(ū, 0, 1) ∈ lR3}.

More generally, u0 corresponds to an equilibrium point if and only if u0 ∈ §x∩§̄x
for x ∈ [0, 1]. One can introduce the angle t̄ for the linear variational equation
for (2.5.12) and prove the following
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Theorem 2.5.7.

(1) The set of equilibria of (2.5.5), (2.5.6) is in one-to-one correspondence with
the set §x ∩ §̄x for x ∈ [0, 1].

(2) An equilibrium point corresponding to u0 is hyperbolic if and only if §x is
transversal to §̄x at u0 for every x ∈ [0, 1].

(3) If u0 corresponds to an hyperbolic equilibrium point and Wu(u0) is the
unstable manifold, then

dimWu(u0) = 1 + [φ(u0, x)/π], x ∈ [0, 1],

where φ(uo, x) = t(x, u0)− t̄(x, u0) is the angle between §x and §̄x measured
clockwise.

2.6. Spatially dependent nonlinearity
In this section, we consider a reaction diffusion equation with constant but
small diffusion and a nonlinearity for which the zeros are spatially dependent.
The objective is to determine the transition layers of the equilibrium solutions
and to classify the stability properties of these solutions in terms of the zeros
of the nonlinearity. In order to keep the notation and details to a minimum,
we will restrict the nonlinearity to be a cubic with only the middle zero being
spatially dependent. The existence of stable solutions in such situations was
observed by Peletier (1976), (1978). With special restrictions on the middle
zero, Clément and Peletier (1985) established the existence and stability
of a strictly monotone equilibrium solution. The characterization of all stable
solutions under generic conditions on the middle zero was given by Angenent,
Mallet-Paret and Peletier (1987) when the middle zero is a smooth func-
tion and by Rocha (1988) when it is a step function. The methods used
by Rocha (1988) for step functions lead to characterization of the stability
properties of all solutions, whereas the methods of Angenent, Mallet-Paret

and Peletier (1987) in the smooth case can be applied only to stable solu-
tions. The other transition layer solutions in the smooth case were considered
by Hale and Sakamoto (1988), a paper in which they also showed how the
above restrictions on the nonlinearity could by eliminated. Kurland (1983)
has described a number of the possible forms of solutons with transition layers
in such situations and used the Conley index to show these forms indeed occur,
but stability was not considered.

2.6.1. Smooth dependence on the spatial variable We consider the equation

(2.6.1) ut = ε2uxx + f(x, u) in (0, 1),

with the boundary conditions (2.3.2), ε > 0 a small parameter and the nonlinear
function f given explicitly by

(2.6.2) f(x, u) = u(1− u)[u− c(x)],
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where c is a C1-function satisfying the following conditions:

(2.6.3)

0 < c(x) < 1,

c′(ζ) 6= 0 if c(ζ) = 1/2,

c(x) 6= 1/2, c′(x) 6= 0 for x = 0 and 1.

The following result is due to Angenent, Mallet-Paret and Peletier (1987).

Theorem 2.6.1. Let Σ0 = { ζ : c(ζ) = 1/2 } and let Σ ⊂ Σ0 be the sequence
0 < ζ1 < ζ2 < . . . < ζM < 1. Then there is an ε0 > 0 such that, for 0 < ε < ε0,
there is a stable equilibrium solution ϕε(x) of (2.6.1), (2.3.2) which is monotone
in a neighborhood of each ζj , c′(ζj)ϕε

x(ζj) < 0 for each j and ϕε(x)→ 0 or 1 as
ε→ 0 uniformly on any closed interval not containing Σ. The number of such
solutions is the M th-Fibonacci number and all stable solutions are obtained in
this way.

The Fibonacci numbers are defined recursively by the relations k0 = 2, k1 = 3,
kN = kN−1 + kN−2.

Remark 2.6.1. In Theorem 2.3.1, we have seen that, for every ε > 0, the only
stable equilibria of (2.6.1), (2.3.2) with c(x) ≡ 1

2 are constant functions. Now
suppose that c(x) = 1

2 +ν(x− 1
2 ), where 0 < ν < 1. Theorem 2.6.1 asserts that,

regardless of the size of ν ∈ (0, 1), there is an ε so that (2.6.1), (2.3.2) has a
stable nonconstant equilibrium; that is, even small smooth perturbations in f
do not preserve the number of stable equilibria uniformly with respect to ε.

We give an outline of the proof for the case in which §0 = {ζ}; that is, a
single point ζ. For definiteness, we also suppose that c′(ζ) < 0. Let Ω0 = (0, ζ),
Ω1 = (ζ, 1), Ωδ

0 = (0, ζ − δ), Ωδ
1 = (ζ + δ, 1) for δ > 0. The first step is to

construct an upper solution u+ and lower solution u− such that u− ≤ u+ in Ω̄
which are close to zero on Ωδ

0 and close to 1 on Ωδ
1 with a sharp transition layer

in the interval (ζ−δ, ζ+δ). The existence of a stable solution in [u−, u+] is then
a consequence of Theorem 2.5.3. This stable solution clearly is nonconstant.
The most difficult part of the proof is to show that there is only one stable
solution in the interval [u−, u+]. This is accomplished by a careful analysis of
the eigenvalue problem for the linearization about the solution and showing
that there is an ε0 > 0 such that, for ε ∈ (0, ε0), the principal eigenvalue is
negative for any equilibrium solution in the interval [u−, u+]. If we let µε be
this principal eigenvalue, then a nontrivial computation shows that

(2.6.4)

µε = −|K(ζ)|ε + o(ε) as ε→ 0,

K(ζ) =

∫ 1

0 fx(ζ, s)ds∫∞
−∞ U ′(y)2dy

=
1
6

c′(ζ)∫∞
−∞ U ′(y)2dy

,
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where U is the solution of the equation

(2.6.5)
Uyy + u(1− u)(u− 1

2 ) = 0,

limy→−∞ U(y) = 0, limy→∞ U(y) = 1.

The last step of the proof is to show that every stable solution can be obtained
in this way.

Theorem 2.6.1 is concerned only with stable solutions and the method of
proof does not permit the discussion of other types of solutions. Hale and
Sakamoto (1988) have shown that it is possible to give a generalization of
part of Theorem 2.6.1, at least that part that is concerned with the existence
and index of solutions that have one transition layer at each of the points at
which the function c is equal to 1/2. To state the result, we need some notation.
As in Theorem 2.6.1, we let § ⊂ §0 be the sequence 0 < ζ1 < · · · < ζM < 1 and
define

(2.6.8)
Ω0 =

 [0, ζ1) ∪ (ζ2, ζ3) ∪ · · · ∪ (ζM , 1] if M is even

[0, ζ1) ∪ (ζ2, ζ3) ∪ · · · ∪ (ζM−1, ζM ) if M is odd

Ω1 = [0, 1] \ Ω̄0

Theorem 2.6.2. Let §, Ω0, Ω1 be defined as above and let K(ζ), U , be de-
fined by (2.6.4), (2.6.5). There exist an ε0 > 0, µ0, d1, 0 < d1 < d0 =
1
2 min{ζ1, ζj+1 − ζj , 1 ≤ j ≤ M − 1, 1 − ζM}, and two families of equilibrium
solutions ϕε

±(x) of (2.6.1), (2.6.2) for which the following properties hold for
0 < ε ≤ ε0:

(1) Uniformly on compact subsets,

lim
ε→0

ϕε
+(x) =

{
0 on Ω0

1 on Ω1

lim
ε→0

ϕε
−(x) =

{
1 on Ω0

0 on Ω1

(2) The first M eigenvalues λj(ε,±), j = 1, 2, . . . , M , of the linear variational
operator about ϕε

±(x) are given by

λj(ε, +) = (−1)jK(ζj)ε + o(ε)

λj(ε,−) = (−1)j+1K(ζj)ε + o(ε)

as ε→ 0 and the remaining eigenvalues are ≤ −µ0.
(3) ϕε

±(x) are monotone over the intervals [ζj − εd1, ζj + εd1], j = 1, 2, . . . , M .
More precisely,

±(−1)j+1ϕε
±,x(x) > 0 for x ∈ [ζj − εd1, ζj + εd1], j = 1, 2, . . . , M.
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Hale and Sakamoto (1988) have given a generalization of Theorem 2.6.2
to the situation where the function f need not be a cubic. The principal
hypothesis on f is that the phase portrait of the solutions of the equation
vxx + f(ζj , v) = 0 has a heteroclinic orbit from 0 to 1 for each j and that this
orbit will not exist if we replace ζj by a constant close to but not equal to ζj .

It is possible to prove this result in several different ways. For the existence
of such solutions, we can follow the procedure in Fife (1974), (1976), Ito

(1984), Mimura, Tabata and Hosono (1980). This involves taking first an
approximation of the solution to be one that consists of a continuous function
which is approximately equal to the solution U((x − ζj)/ε) of (2.6.5) (or its
reflection) in a neighborhood of each of the points ζj , j = 1, 2, . . . , M, and is
0 or 1 on the other parts of the interval. The Implicit Function Theorem can
then be used to show the existence of an exact solution near this approximate
one. After showing that the limiting value of the solution as ε → 0 is a step
function with values 0 or 1, the approximate eigenvalues can be shown to satisfy
the statement in the theorem by employing the so called SLEP (singular limit
eigenvalue problem) method (see, for example, Fujii and Nishiura (1987),
Nishiura (1982)).

The method of proof given by Hale and Sakamoto (1988) has a more
geometric flavor and leads to the existence and stability of the solution at the
same time. More precisely, they give the detailed proof by using the method
of Lyapunov-Schmidt. It is clear from the approximations and estimates given
in that paper that the center manifold theorem also could be used. This latter
method also gives information about the unstable manifold of the equilibrium
point. To apply these more geometric methods, one must obtain a better
approximation for the solution than the obvious one mentioned above. Hale

and Sakamoto (1988) show how to obtain a more accurate asymptotic formula
for the solution and, in fact, it approximates a solution of the equation up
through terms of order ε and the differential equation is satisfied up through
terms of order ε2. This is sufficient to apply Lyapunov-Schmidt or the center
manifold theorem since it is shown that the eigenvalues satisfy the properties
stated in the theorem; that is, the smallest ones are of order ε. The details
of any proof of this type is very technical and we refer the reader to the cited
papers as well as one by Taniguchi (1996).

It seems plausible, but the detailed proof has not been given, that the only
solutions with one transition layer at the points ζj are the ones given above.

It is known (see Kurland (1983)) that there is no upper bound on the
number of equilibrium solutions as ε→ 0 and, in fact, as ε→ 0, there are more
and more highly oscillatory solutons. The index of these solutions is not known.
Such information plays a very important role in the understanding of complete
flow on the attractor since this is determined by the unstable manifolds of the
equilibrium points.

270



2.6.2. Piecewise constant spatial dependence. Rocha (1988) has considered
(2.6.1), (2.3.2) in the situation where the function c is a step function. He has
obtained a complete analogue of Theorem 2.6.1. Also, the method of proof
permits the discussion of unstable equilibrium points and their index as well as
information about the connections between the equilibria. The complete flow
on the attractor has been analyzed in some nontrivial cases for all ε > 0. Due
to the fact that the middle zero of f is a step function and not constant, the
number of equilibria is bounded independent of ε!

We now state the result of Rocha (1988).

Theorem 2.6.3. Let c : [0, 1] → (0, 1) be a step function with c(x) 6= 1/2 for
any x. Let c jump across 1/2 at the M points 0 < ζ1 < ζ2 < · · · < ζM < 1
and let ζ0 = 0, ζM+1 = 1. Then there is an ε0 > 0 such that, for 0 < ε ≤ ε0,
the number of stable equilibrium points of (2.6.1), (2.6.2), (2.3.2) is exactly the
M th Fibonacci number. Furthermore, a stable solution ϕε(x)→ 0 or 1 on each
interval (ζj , ζj+1), j = 0, 1, . . . , M , and is monotone in a neighborhood of each
ζj with

[c(ζ+
j )− c(ζ−j )]ϕε

x(ζj) < 0, j = 1, 2, . . . , M.

The proof of this result uses the method discussed in Section 2.5.3 with
b2 = ε2 and the notation u(x, u0), θ(u0), t(x, u0), t̄(x, u0) of that section. It
is first shown that, for any 0 < δ < 1/2, there is an ε0 > 0 such that, for
0 < ε < ε0, each equilibrium point ϕ = ϕ(·, u0) with u0 ∈ [δ, 1− δ] is unstable.
This permits one to reduce the discussion to the manner in which the stable
and unstable manifolds of 0 and 1 intersect for ε small, which is an argument
in the phase plane.

Rocha (1988) has given the complete attractor for special situations in
which there are one or two jumps of the function c across 1/2.

2.7. Connecting orbits.
In this section, we present general results of Fiedler and Rocha (1995) on the
existence of connecting orbits between equilibrium points of the scalar equation

(2.7.1)
ut = a(x)uxx + f(x, u, ux), x ∈ (0, 1),

ux = 0 at x = 0, 1,

where a ∈ C2([0, 1]) is positive and f is a C2-function. For the space of initial
data, we choose X as those functions v in H2([0, 1]) with vx = 0 at x = 0, 1.
Equation (2.7.1) defines a local semiflow in X . We also suppose that the system
is dissipative in X and thus we have a compact global attractor A.

As we have noted in Section 2.1, (2.7.1) is gradient and ω(ϕ) is a single
equilibrium point; that is, a solution of the equation

(2.7.2)
a(x)uxx + f(x, u, ux) = 0, x ∈ (0, 1),

ux = 0 atx = 0, 1,
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We also assume that each element of the set E of equilibria is hyperbolic
so that A = ∪ϕ∈EWu(ϕ), where Wu(ϕ) is the unstable manifold of ϕ and E
is the set of equilibria.

Given ϕ, ψ ∈ E, let C(ϕ, ψ) denote the set of connecting orbits from ϕ to
ψ; that is, the set of trajectories u(t) which are defined for t ∈ lR with the
property that ω(u(·)) = ψ and α(u(·)) = ϕ. It is clear that

A = E ∪ (∪ϕ,ψ∈EC(ϕ, ψ)),

C(ϕ, ψ) = Wu(ϕ) ∩W s(ψ).

Since A is compact, the set E is finite, say E = {ϕ1, . . . , ϕk}. Let us order
these elements so that

(2.7.3) ϕ1(0) < ϕ2(0) < · · · < ϕk(0).

By uniqueness of the initial value problem for the ODE (2.7.2), these values
are distinct. At the other boundary point x = 1, that order may have changed
and we have a permutation π of the integers 1, 2, . . . , k defined by

(2.7.4) ϕπ(1)(1) < ϕπ(2)(1) < · · · < ϕπ(k)(1).

This permutation was introduced by Fusco and Rocha (1991) and some
important consequences were deduced including Lemma 2.7.1 below. The
amazing thing about this permutation is that it characterizes the existence
of connecting orbits as stated in the following result of Fiedler and Rocha

(1995).

Theorem 2.7.1. Let π be the permutation defined by (2.7.3), (2.7.4). Then
π determines, in an explicit constructive process, which equilibria are con-
nected and which are not; that is, this permutation determines which of the
sets C(ϕ, ψ) are nonempty.

The connection problem has a rather long history with contributions result-
ing from detailed investigation of special cases, especially the Chafee-Infante
problem (see Fiedler and Rocha (1995) for a detailed discussion and bibli-
ography). The proof of Theorem 2.7.1 is based on several constructive lemmas
which also permit one to determine the index of each equilibrium as well as
connecting orbits. For any function u ∈ X , let z(u), the zero number of u, be
the number of strict sign changes of u.

Lemma 2.7.1. The permutation π constructively and explicitly determines i(ϕ)
and z(ϕ− ψ) for all ϕ, ψ ∈ E. They are given explicitly as

(2.7.5) i(ϕm) = §m−1
j=1 (−1)j+1 sign (π−1(j + 1)− π−1(j))

for 1 ≤ m ≤ k and

(2.7.6)
z(vn − vm) = i(vm) + 1

2 [(−1)n sign (π−1(n)− π−1(m)) − 1]

+§n−1
j=m+1(−1)j sign (π−1(j)− π−1(m))
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for 1 ≤ m < n ≤ k.These numbers are determined by the recursive formulas:

(2.7.7) i(ϕm+1) = i(ϕm) + (−1)m+1 sign (π−1(m + 1)− π−1(m)),

(2.7.8) i(ϕ1) = 0 = i(ϕk),

(2.7.9) z(ϕm+1 − ϕm) = min {i(ϕm), i(ϕm+1)},

(2.7.10)

z(ϕn+1 − ϕm) = z(ϕn − ϕm)

+ 1
2 [(−1)n+1 sign (π−1(n + 1)− π−1(m))

+(−1)n sign (π−1(n)− π−1(m)))]

(2.7.11) z(ϕn − ϕ1) = z(ϕk − ϕm) = 0.

The second step of the proof is to observe that the existence of C(ϕ, ψ) implies
a very special type of cascading.

Lemma 2.7.2. (Cascading) Suppose that ϕ, ψ ∈ E and let n = i(ϕ) − i(ψ).
Then C(ϕ, ψ) 6= ∅ if and only if there is a cascade {ϕ = e0, e1, . . . , en = ψ} of
equilibria such that, for all 0 ≤ j < n, we have

(i) i(ej+1) = i(ej) + 1,
(ii) C(ej+1, ej) 6= ∅.

By the cascading lemma, it is sufficient to check all of the possible connections
from ϕ to ψ when i(ϕ) = i(ψ) + 1. There are some criteria for determining
if such connections exist. To state this precisely, we introduce the following
definition.

Definition 2.7.1. If ϕ, ψ ∈ E, i(ϕ) = i(ψ) + 1, we say that connections
between ϕ and ψ are blocked if one of the following conditions holds:

(i) z(ϕ− ψ) 6= i(ψ),
(ii) there is a η ∈ E with η(0) between ϕ(0) and ψ(0) such that z(ϕ − η) =

z(ψ − η) = z(ϕ− ψ).

It was observed by Brunovský and Fiedler (1989) that blocking prevents
connections. The reverse statement is due to Fiedler and Rocha (1995) and
stated as

Lemma 2.7.3. (Liberalism) If ϕ, ψ ∈ E, i(ϕ) = i(ψ) + 1 and connections from
ϕ to ψ are blocked, then C(ϕ, ψ) = ∅. If they are not blocked, then C(ϕ, ψ) 6= ∅.
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The proofs of these results are very long and depend in a significant manner
upon the fact that the zero number of solutions of linear parabolic equations
drop immediately after the existence of a double zero (Angenent (1988)), the
fact that stable and unstable manifolds always intersect transversally (Henry
(1985), Angenent (1986)), phase space analysis, the Sturm-Liouville theory and
the Conley index.

Let us consider two differential equations (2.7.1) corresponding to (a, f)
and (b, g) with attractors A(a,f) and A(b,g) and equilibrium sets E(a,f) and
E(b,g). We say that A(a,f) and A(b,g) are topologolically equivalent if there is
a homeomorphism h : A(a,f) → A(b,g) which takes orbits of (a, f) to orbits of
(b, g) and preserves the sense of direction in time.

We state the following result of Fiedler and Rocha (1996) without comments
on the proof.

Theorem 2.7.2. Assuming that (a, f) and (b, g) are dissipative and all equi-
librium points are hyperbolic, then π(a,f) = π(b,g) implies A(a,f) and A(b,g) are
topologically equivalent.

There are many problems remaining in this area. For example, it would be very
interesting to understand which permutations can be realized by an equation
of the form (2.7.1). This would be especially important in modeling. These
questions are discussed at some length in Fiedler and Rocha (1995) (see also
Fiedler (1994)).

Example 2.7.1. Let us apply this result to the classical Chafee-Infante prob-
lem with symmetric reaction term:

(2.7.12) ut = ε2uxx + u− u3 in (0, 1)

with the homogeneous Neumann boundary conditions. For ε−1 ∈ (nπ, (n+1)π),
we have remarked earlier that Chafee and Infante (1974)) have shown that
there are exactly k = 2n + 1 equilibrium points u0 = 0, u±j , j = 1, 2, . . . , n− 1,
u±n = ±1, each of which is hyperbolic. Also, i(u0) = n, i(u±j ) = n − j,
j = 1, 2, . . . , n, the attractor An has dimension n, is the closure of Wu(0) and
C(u+

j+1, u
+
j ) 6= ∅ for any j (Henry (1985)). Even more is known about the

dimension of the sets of connecting orbits. These results were obtained using
bifurcation theory, spectral analysis and transversality theory.

Let us show how the general theory above allows us to easily conclude
information about connecting orbits. To be specific, let us fix k = 7; that is,
n = 3, and fix ε−1 ∈ (3π, 4π). The attractor then has exactly 7 hyperbolic
equilibrium points. We order them according to their values at x = 0 : ϕ1(0) <
· · · < ϕ7(0). The functions ϕ2 = −ϕ4 have one zero, the functions ϕ3 = −ϕ5

have two zeros and the others are constants. Because of the symmetry in the
problem, we also see immediately that

π =
[
1 2 3 4 5 6 71 6 3 4 5 2 7

]
.
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If we use the recursive formulas (2.7.6), (2.7.7), then we have the vector of
indices

(i(ϕn))n = [0, 1, 2, 3, 2, 1, 0],

the same result that we noted above obtained in a more analytical way.
To check for connections, we must check for blockage and thus we must

determine properties of the zeros of the differences between equilibria. Using
the recursive formulas (2.7.9)–(2.7.11), we deduce that the matrix of these
differences is given by

(z(ϕn − ϕm))n,m =



0 0 0 0 0 0 0
0 1 1 1 1 1 0
0 1 2 2 2 1 0
0 1 2 3 2 1 0
0 1 2 2 2 1 0
0 1 1 1 1 1 0
0 0 0 0 0 0 0


where we have put the index i(vn) on the diagonal for convenience. The off
diagonal elements in the matrix are given explicitly by z(ϕn − ϕm) = 3 −
max{|4−m|, |4− n|}.

From the definition of blockage, Lemma 2.7.3, the matrix for the indices
and the matrix for the z(ϕn−ϕm), it is easy to check that there is no blockage
if i(ϕ) = i(ψ)+1 and thus there is connection between these points. This gives
us the following graphical information about the one-dimensional connections:
4 goes to 3 and 5, which go to 2 and 6 which go to 1 and 7.

If we take into account the indices of the respective points and use continu-
ous dependence of solutions on the data, then we can also see that 4 connects
to each point and 3 and 5 connect to 2, 6, 1, 7.

In this way, we obtain the qualitative information of the flow that was
mentioned above by very simple computations.

For other interesting examples with 11 equilibrium points, see Fiedler

and Rocha (1995) and for a classification of the possible one dimensional
connection graphs with 9 or fewer equilibrium points, see Fiedler (1994).

2.8. Nonlocal reaction terms
We have seen in previous sections how stable nonconstant equilibrium solu-
tions can occur if either the diffusion coefficient or the nonlinear reaction term
depends upon the spatial variable. In either situation, it was not possible to
obtain a bifurcation from a stable constant solution to a stable nonconstant
solution. In this section, we discuss the generation of such solutions as a con-
sequence of the presence of nonlocal terms in the equation. In the classical
Sturm-Liouville theory of self adjoint eigenvalue problems, the eigenvalues are
ordered according to the number of zeros of the eigenfunctions. As we will see,
if there are nonlocal terms in a linear equation, then this type of ordering may
not hold. Therefore, it is possible to have a bifurcation from a stable constant

275



equilibrium solution to a stable nonconstant equilibrium solution. There are
many applications for equations of this type; for example, ballast resistors, pop-
ulation dynamics, etc. We will see also that they occur as limiting situations
for pairs of reaction diffusion equations where one of the diffusion coefficients
is very large.

As the simplest illustration of equations with nonlocal terms, we consider

(2.8.1) ut = uxx + f(u, [u]) in (0, 1),

with the homogeneous Neumann boundary condition (2.3.2), where f(u, v) is a
C2-function and there are a continuous function γ on (0, 1) and a C2-function
r on R such that

(2.8.2) [ϕ] =
∫ 1

0

γ(y)r(ϕ(y)) dy

for all ϕ ∈ H1((0, 1)). If γ(y) ≡ 1 for all y and r(u) = u for all u ∈ R, then [ϕ]
is just the average of ϕ.

Chafee (1981) encountered an equation of this type in his study of the
ballast resistor. This is a device consisting of a straight segment of very thin
wire surrounded by a gas having a fixed temperature. For the ballast resistor
with constant voltage differential V along a wire of length one, a reasonable
model asserts that the temperature in the wire satisfies the equation

(2.8.3) ut = uxx − g(u) + V 2r(u)[
∫ 1

0

r(u(y, t)) ds]−2 in (0, 1)

with homogeneous Neumann boundary conditions, where r(u) is the resistance
in the wire. Let us consider only nonnegative solutions of (2.8.3). Under
reasonable physical conditions, Chafee (1981) showed that there is a unique
constant solution c. Furthermore, there is a V ∗ such that, for V < V ∗, every
solution approaches c as t→∞ and c is stable. From the theory of Chapter 1,
this implies that the global attractor is the point c. For V > V ∗, the point c is
unstable and there is a stable nonconstant solution which arises as a primary
bifurcation from the point c. The complete dynamics of (2.8.3) is not known.

In the modeling of population dynamics, it is sometimes reasonable to sup-
pose that some weighted average of the total population affects an individual.
In such a situation, the model could lead to equation (2.8.1) (see, for example,
Levin and Segal (1982), (1985)) and stable nonconstant equilibrium solu-
tions can arise through primary bifurcations from constant equilibrium states.
A typical example is

(2.8.4) ut = duxx + u[1 + a

∫ 1

0

α(x− y)u(y, ·) dy − b

∫ 1

0

β(x− y)u(y, ·) dy],

where all constants and functions are positive and Neumann boundary condi-
tions are imposed. There are many other interesting examples in the papers of
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Levin and Segal, including systems of equations. Calsina and Perelló (1995)
have scalar models with nonlocal terms for populations competing amongst
themselves but with different growth rates and systems of equations when a
new species is introduced and competing for the same resource.

To have a primary bifurcation from a constant solution lead to a stable
nonconstant equilibrium solution is in complete contrast to the situation that
occurs without the term [u]. In fact, suppose that f in (2.8.1) is a function only
of u and consider the linear variational equation about a constant equilibrium
solution u0. If the eigenvalues of the corresponding linear operator are ordered
as µ1 > µ2 > . . ., then the corresponding eigenfunctions ϕ1, ϕ2, . . . have the
property that ϕj has exactly j − 1 zeros in the interval (0, 1). If f(u) = fλ(u)
depends upon a parameter λ, then the eigenvalues µj = µj(λ) depend upon λ.
If we suppose that u0 is stable (and hyperbolic) for λ < λ0 and unstable (and
hyperbolic) for λ > λ0, then f ′λ(u0) = 0 and µ1(λ0) = 0. The corresponding
eigenfunction satisfies uxx = 0 or ux = constant. The Neumann boundary
conditions imply that ux = 0 and so u = constant. Thus, any bifurcation
will be in the direction of constant functions and one will not obtain a stable
nonconstant equilibrium solution. As a consequence, the stable nonconstant
equilibrium solutions, if they exist, cannot occur as primary bifurcations from
constant solutions.

We now give a simple explanation of why the existence of nonlocal terms in
(2.8.1) can lead to stable nonconstant equilibrium solutions through primary
bifurcations from constant solutions. We first assume that γ(y) ≡ 1 for all y

and r(u) = u for all u ∈ R; that is, [ϕ] = ϕ̄ =
∫ 1

0
ϕ(y) dy. The eigenvalues µ

of the linear variational operator for a constant solution u0 of (2.8.1) are the
solutions of the boundary value problem

(2.8.5)
vxx + αv +β

∫ 1

0 v(y) dy = µv, 0 < x < 1,

vx = 0 at x = 0, 1,

where α = fu(u0, u0), β = f[u](u0, u0). By expanding v(x) as a Fourier series,

v(x) = u0 +
1
2
Σn≥1vncos nπx,

we observe that the eigenvalues µn and the eigenfunctions ϕn are given by

µ0 = α + β, ϕ0(x) = 1,

µn = −n2π2 + α, ϕn(x) =
1
2
cos nπx, n ≥ 1.

It always is true that µ1 > µ2 > . . . ; that is, these eigenvalues are ordered
according to the number of zeros in (0, 1) of the corresponding eigenfunctions.
On the other hand, µ0 cannot be ordered with the other eigenvalues. Its rela-
tionship to the other eigenvalues depends upon the size of β. The sign of the
largest eigenvalue depends upon the relative size of α and β. If we are interested
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in the first bifurcation that will occur from a stable equilibrium u0, then the
bifurcation will be to a constant solution if µ0 > µ1 and it will be a noncon-
stant solution if µ0 < µ1. In the (α, β)-plane, the line β = −π2 corresponds to
the situation where µ0 = µ1, the half ray α = −β, α < π2 corresponds to the
curve of bifurcation to a constant solution, and the half ray α = π2, β < −π2

corresponds to the curve of bifurcation to nonconstant solutions. If these bi-
furcations are supercritical, then we obtain stable solutions after bifurcation.
On the half ray α = π2, β < −π2, the primary bifurcation leads to stable
nonconstant solutions.

Let us now consider the general case (2.8.2). If we define γ̃(s) = γ(s)r′(u0),
then the linear variational equation about a constant solution u0 is

(2.8.6)
vxx + αv +β

∫ 1

0

γ̃(y)v(y) dy = 0, 0 < x < 1,

vx = 0 at x = 0, 1,

The eigenvalues and eigenfunctions of the linear operator defined by this equa-
tion are

µ0 = α + β

∫ 1

0

γ̃(s) ds, ψ0(x) = 1,

µn = α− n2π2, ψn(x) = cos nπx− β

n2

∫ 1

0

γ̃(s)cos nπs ds, n ≥ 1.

The situation is essentially the same as before.
If we return to the equation for the ballast resistor (2.8.3), then the linear

variational equation about the constant solution is a special case of (2.8.6) and
we have an explanation of the appearance of a stable nonconstant equilibrium
solution.

By adding functional dependence (nonlocal terms) in the equation as above,
we are allowing the vector field to give special emphasis to the (weighted) pro-
jection of the solution onto the linear subspace spanned by the first eigenfunc-
tion of the operator ∂2/∂x2 with Neumann boundary conditions; that is, the
constant functions. By projecting onto larger subspaces, one can obtain very
complicated dynamics from a scalar equation. As a simple illustration, consider
the functional

f(x, ϕ) = g(ϕ1, ϕ2) + h(ϕ1, ϕ2)cos πx

ϕ1 =
∫ 1

0

ϕ(y) dy, ϕ2 = 2
∫ 1

0

ϕ(y)cos πy dy

and the equation

ut = uxx + f(x, u(·, t)), 0 < x < 1,

with homogeneous Neumann boundary conditions. If (a(t), b(t)) is a solution
of the equation

ȧ = g(a, b), ḃ = −π2b + h(a, b),
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then u(x, t) = a(t) + b(t)cos πx is a solution of the PDE. Thus, for any given
dynamics in the plane, there is a scalar one dimensional parabolic equation for
which the dynamics contains the one specified in the plane. We emphasize that
to obtain this result, we allowed the vector field to depend explicitly upon the
spatial variable.

By projecting onto the span of more of the eigenfunctions, it is possible to
reproduce any dynamics in Rn. Of course, the nonlinearities obtained in this
way are artificial and may not correspond to any meaningful physical problem.
On the other hand, such a discussion makes it clear that any problem which
involves nonlocal terms has the possibility of exhibiting complicated dynamics.

Fiedler and Polàčik (1990) recently have observed how complicated dy-
namics can be achieved with f depending on the spatial variables and linear
terms involving the nonlocal terms. More specifically, they consider the equa-
tion

(2.8.7) ut = uxx + a(x)u + g(x, u) + c(x)α(u), 0 < x < 1,

where

(2.8.8) α(u) =
∫ 1

0

ν(y)u(y, ·) dy

a, c are continuous, ν ∈ L2(0, 1), g is C∞ in u and the solution u of the equation
is required to satisfy homogeneous Dirichlet boundary conditions (Neumann
conditions probably could be used). Their main result is the following

Theorem 2.8.1. Consider (2.8.7), (2.8.8) with homogeneous Dirichlet bound-
ary conditions. There is a residual set G ⊂ C[0, 1] such that, for any a ∈ G, the
following holds. Let ω1, ω2, . . . , ωm be given mutually distinct positive num-
bers. Let V be any polynomial vector field on R2m of degree N such that
V (0) = 0 and V ′(0) = 0. Then there exist c, ν ∈ C[0, 1] and a function g which
is C∞ in u which vanishes together with its first derivative at u = 0, such that

(i) The spectrum of the linearized operator Au = −uxx − a(x)u − c(x)α(u) is
given by the algebraically simple eigenvalues

+iωj, −iωj, j ≤ m, λk, k > 2m,

where λk 6= 0 is the kth eigenvalue of the unperturbed operator Lu = −uxx−
a(x)u.

(ii) If H is the vector field on a CN -center manifold of the equilibrium u = 0
of equation (2.8.7), (2.8.8), then, in real coordinates, the Taylor expansion
of H at 0 coincides with V for orders 2 to N.

We remark that the existence of complicated dynamics obtained in the
above way involves the consideration of vector fields with non local terms and
also explicit dependence on the spatial variable.There still remains the problem
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of deciding if a particular equation can exhibit complicated dynamics and, in
particular, how complicated the dynamics can be if we do not allow explicit
spatial dependence.

For a system of two reaction diffusion equations for which one diffusion
coefficient is large relative to the other, it is sometimes possible for the flow
on the attractor to be reduced to a single equation with nonlocal dependence.
In general, such an equation also will involve hereditary effects, but there are
situations where it is reasonable for these to be neglected. Let us discuss this
in more detail. Consider the system of equations

(2.8.9)
ut = duxx + f(u, v),

vt = δ−1vxx + g(u, v),

on (0, 1) with homogeneous Neumann boundary conditions. Suppose that this
equation has a global attractor. If d is fixed, Hale and Sakamoto (1989) (see
also Nishiura (1982), Fujii and Nishiura (1987)) have shown that there is a
δ0(d) > 0 such that, for 0 < δ ≤ δ0(d), the flow on the attractor is determined
from the flow on the attractor for the shadow system

(2.8.10)
ut = duxx + f(u, ξ),

ξ̇ =
∫ 1

0 g(u(y, ·), ξ) dy.

Equation (2.8.10) has a global attractor Ad. If we suppose that λ is a positive
constant and

(2.8.11) g(u, v) = −λ[v − h(u)]

(a situation that occurs frequently in the applications), then any solution
(u(t), ξ(t)) of (2.8.10) on the attractor Ad must have ξ(t) bounded on lR. From
the second equation in (2.8.10), ξ(t) must be given by

(2.8.12) ξ(t) = λ

∫ t

−∞
e−λ(t−s)H[u](s) ds, H[u](t) =

∫ 1

0

h(u(y, t)) dy.

This implies that u is a solution of the retarded equation with nonlocal effects

(2.8.13) ut = duxx + f(u(·, t), λ
∫ 0

−∞
eλsH[u](t + s) ds)

with the Neumann boundary conditions.
We remark that, if λ is large, then it is reasonable to suppose that the

flow on the attractor Ad should be closely related to the flow defined by the
equation

ut = duxx + f(u(·, t),
∫ 1

0

h(u(y, t)) dy),

which is a special case of (2.8.1).
Freitas (1993) has characterized the stable solutions of (2.8.1) according

to the number of zeros of the solution.
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2.9. Traveling waves in the small viscosity limit
It is generally accepted folklore that traveling wave solutions of parabolic partial
differential equations are representative of typical behavior of solutions of the
same partial differential equation on a large unbounded domain. In this section,
we present some results of Fusco, Hale and Xun (1995) which make this
rigorous for a scalar reaction diffusion equation in one space variable.

If a ∈ (−1, 1) is a given constant and

(2.9.1) fa(u) ≡ (u + a)(u2 − 1) ≡ f0(u) + ag(u),

then it is well known that the equation

(2.9.2) ut = uxx − fa(u) x ∈ (−∞,∞)

has a unique, except for translation, monotone increasing (decreasing) traveling
wave solution U with wave speed

√
2a and limx→±∞ U(x) = ±1 if a > 0 (∓1 if

a < 0). For a = 0, both of these solutions exist and are called standing waves.
Let X be the Banach space consisting of either the space Lp(lR), 1 ≤ p <∞

or the space Cunif(lR) of the space of uniformly continuous functions on lR or
the space C0(lR) of continuous functions on lR which vanish at ∞. Let M be
the one dimensional manifold in X defined by M = {U(· + h) : h ∈ lR}. The
traveling wave U is said to be stable if there is a neighborhood W of M in X
such that, for any ϕ ∈W , there is an hϕ ∈ lR such that the solution u(x, t) of
(2.9.2) with u(x, 0) = ϕ(x) satisfies

(2.9.3) lim
t→∞

|u(·, t)− U(·+
√

2at− hϕ)|X = 0.

It is known that the traveling wave U is stable in X and also that the limit in
(2.9.3) is exponential (see, for example, Henry (1981)).

Our objective is to obtain this traveling wave as the limit of solutions of
the reaction diffusion equation (2.9.2) on a finite interval (−1/ε, 1/ε) with ho-
mogeneous boundary conditions; that is, as the limit as ε→ 0 of a solution of
the equation

(2.9.4) ut = uxx − fa(u) x ∈ (−1
ε
,
1
ε
)

with the boundary conditions

(2.9.5) ux = 0, x = ±1
ε
.

Fusco, Hale and Xun (1995) have demonstrated the following result.

Theorem 2.9.1. There exist positive constants C, a0 such that, for any integer
k, there are positive constants ε0, C1, C2, C3 such that, if 0 < ε ≤ ε0, |a| ≤ a0,
then, for any solution uε(x, t) of (2.9.4), (2.9.5) with initial data in a C

√
a0

L∞-neighborhood of U(·), there is a positive constant h0 such that

|u(x, t)− U(x +
√

2at− h0)| ≤ C1ε
k−2
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for x ∈ [− 1
ε , 1

ε ], t ∈ (C2k log 1
ε , C3

ε ).

The proof depends upon some very complicated estimates which force the as-
sumption that the constant a should be bounded by a0 which is small. Of
course, it is to be expected that this restriction on a is unnecessary, but a dif-
ferent approach will be needed. Perhaps the more general result can be proved
by exploiting the known fact that the traveling wave has the strong stability
property expressed in (2.9.3) together with the fact that this limit approaches
zero exponentially as t→∞.

The motivation for the proof stems from very simple considerations of the
attractor Aε,a for (2.9.4), (2.9.5). When the equilibria are hyperbolic, the
attractor Aε,a is the union of the unstable manifolds of the equilibria. There
are only two stable equilibrium points ±1 and the point a is always unstable.
As ε → 0, the number of equilibrium points becomes unbounded and, for any
integer N , there is an interval IN such that, if ε ∈ IN , then there are exactly
2N + 1 equilibrium points, all hyperbolic, with two of index j, 1 ≤ j ≤ N − 1,
and the equilibrium point a has index N . If ϕ1 is an equilibrium point of
index 1, then it is monotone on (−1/ε, 1/ε) and its unstable manifold Wu

ε,a(ϕ1)
consists of functions which also are monotone on (−1/ε, 1/ε). Furthermore, ϕ1

is connected to ±1 by an orbit and the set Wu
ε,a(ϕ1) is a local attractor in Aε,a.

Therefore, it natural to suspect that, as ε → 0, this set will be related to the
traveling wave.

If a = 0, it is not too difficult to verify the above intuitive remarks and to
show that Wu

ε,0(ϕ1) converges to a monotone standing wave. If a 6= 0, the result
is not obvious. To be specific, suppose that a > 0. Using the phase plane for the
determination of the equilibria, it is not difficult to see that there is a monotone
increasing equilibrium point ϕε,a of index 1 such that ϕε,a(y/ε)→ 1 as ε→ 0
uniformly on compact subsets of (−1, 1). If we let Wu−

ε,a (ϕε,a) designate the
orbit which connects ϕε,a to −1, then it natural to suspect that each point on
Wu−

ε,a (ϕε,a) will approach a translate of the traveling wave of (2.9.1), (2.9.2).
There also is another equilibrium solution which has index 1 and is monotone
decreasing. In the scaled variables x 7→ y/ε, it also approaches 1 as ε → 0
uniformly on compact sets of (−1, 1). Therefore, each element of the orbit
connecting this equilibrium point to 1 approaches the constant function 1 and
does not yield a traveling wave. Similar remarks apply to the case where a < 0.

Theorem 2.9.1 is a precise justification of the previous intuitive remarks in
the situation where a is sufficiently small. The idea for the proof is to construct
an approximate manifold for the unstable manifold of the equilibrium point of
index 1 and show that the traveling wave solution of (2.9.2) is nearby.

2.10. Synchronization
Suppose that we have an evolutionary partial differential equation on a bounded
domain Ω ⊂ lRN which involves diffusion with solutions defined in a Banach
space X(Ω). Also, suppose that there exists a global attractor A ⊂ X(Ω). If we
think of this diffusive equation as the diffusive interaction of particles located
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at each position x ∈ Ω, then it is natural to say that the system is synchronized
if each point in the attractor is spatially independent. If this is the case, then
the dynamics on the attractor is such that each partilce behaves in exactly the
same way.

If we denote D ⊂ X(Ω) as the diagonal in X(Ω); that is, D = {ϕ ∈ X(Ω) :
ϕ(x) = a constant, x ∈ Ω} is the set of constant functions, then saying that
the system is synchronized is equivalent to having A ⊂ D.

If there are parameters λ in the equation, it may happen that the attractor
Aλ → D as |λ| → ∞. In such a case, we say that the system is almost
synchronized for large |λ|.

Other types of synchronization problems occur in the applications. For
example, it may be that the domain Ω is naturally decomposed into subdomains
Ωj , j = 1, 2, . . . , p, with the diffusive properties through the boundary of these
subdomains being much slower than the diffusion on the subdomains. In such
a situation, it is natural to investigate the relationship between the dynamics
on the subdomains and to understand if they behave in a similar way; that is,
almost synchronization of the dynamics on the subdomains.

It can also happen that systems become synchronized in some spatial di-
rections, but not in all directions. This will be the case, for instance, if we are
considering domains which are thin in some directions.

For systems of evolutionary equations, some components of the system may
undergo much faster diffusion than others and we would expect that some
components of the system are synchronized or almost synchronized.

Our objective in this section is to summarize, and interpret in the above
context, some known results on the asymptotic behavior of parabolic systems.

2.10.1. Large diffusion in the whole domain – well mixing We begin with the
scalar equation

(2.10.1)
ut = d∆u + f(u) in Ω,

∂u

∂n
= 0 in ∂Ω,

in the space H1(Ω), where d > 0 is a positive constant.
If the diffusion coefficient is large, the system is said to be well mixed and

it reasonable to expect that the asymptotic dynamics is independent of the
diffusion; that is, it should be described by the ODE

(2.10.2) u̇ = f(u).

A precise statement of this result is the following theorem due to Conway,

Hoff and Smoller (1978), Hale (1986).

Theorem 2.10.1. If f is a C2-function and there is a δ > 0 such that f
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satisfies the dissipative condition

(2.10.3) lim sup
|u|→∞

f(u)
u
≤ −δ < 0,

then there is a d0 > 0 such that, for d ≥ d0, the compact global attractor Ad

of (2.10.1) belongs to D; that is, the system is synchronized. The attractor
Ad = A0 for all d ≥ d0 where A0 is the attractor for the ODE (2.10.2).

Proof. Condition (2.10.3), the maximum principle and the fact that solutions
are regular for t > 0 imply that there is a bounded set B ⊂ H1(Ω) such that
Ad ⊂ B for d > 0. If we make the change of variables in (2.10.1), u = ξ + w,
ξ = |Ω|−1

∫
Ω

udx, then

ξ̇ = |Ω|−1
∫
Ω f(ξ + w)dx,

wt = d∆w + f(ξ + w)− |Ω|−1
∫
Ω f(ξ + w)dx

= d∆w + h(ξ, w)w.

On Ad, the function h(ξ, w) is bounded uniformly in d > 0. If 0 > −µ1 ≥
−µ2 ≥ . . . are the eigenvalues of ∆ with homogeneous Neumann boundary
conditions, then the eigenvalues of d∆|{w :

∫
Ω

w = 0} are given by −dµj and
approach −∞ as d → ∞. We can then use this fact to show that there is a
d0 > 0 such that w → 0 exponentially as t → ∞ on Ad if d ≥ d0. Since the
attractor is invariant, it follows that w = 0 on Ad.

Remark 2.10.1. The same proof holds for the case in which u is an n-vector
and d is a diagonal matrix d = diag (d1, . . . , dn) provided that we know that
the attractors Ad are uniformly bounded for dj > 0. If dj ≥ d0, sufficiently
large, then Ad ⊂ D. To prove the uniform boundedness of Ad is not trivial in a
general setting. However, if there is a sequence of invariant rectangles Rk for the
ODE (2.10.2) with Rk ⊂ Rk+1 → lRn as k → ∞, then it is possible to obtain
this uniform boundedness (see, for example, Carvalho (1995), Carvalho,

Cholewa and Dlotko (1995)).

Remark 2.10.2. It also is possible to consider the case where u is a vector
and the function f = f(u,∇u) depends upon the gradient of u provided that
the growth rate in ∇u is linear. For large diffusion, the ODE that contains the
attractor is u̇ = f(u, 0) (see Carvalho and Hale (1991)).

If we allow spatial dependence in the reaction term f = f(x, u) in (2.10.1),
then it is not to be expected that the attractor Ad is generally in D. However,
for large d, we obtain some interesting information. If we introduce the same
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coordinates as before, we obtain the equations

(2.10.4)

ξ̇ = |Ω|−1
∫
Ω f(x, ξ + w)dx,

wt = d∆w + f(x, ξ + w)− |Ω|−1
∫
Ω

f(x, ξ + w)dx

= d∆w + h(x, ξ, w)w + g(x, ξ),

where g(x, ξ) = f(x, ξ) − |Ω|−1
∫
Ω f(x, ξ)dx. If we assume that the attractor

Ad is uniformly bounded for d > 0, then h(x, ξ, w), g(x, ξ) is bounded on Ad

for d > 0.
We can now apply invariant manifold theory to (2.10.4) to show that Ad

belongs to a smooth graph over D with representation w = p(ξ, d) if d ≥ d0,
sufficiently large. Furthermore, there are positive constants C, c such that, for
d ≥ d0,

|p(ξ, d)| ≤ C|ξ|
d0 − c

.

This implies that Ad → D as d0 →∞ and we have almost synchronization.
The flow on Ad is given by w(t) = p(ξ(t), d), where ξ(t) lies on the attractor

for the ODE

(2.10.5) ξ̇ = |Ω|−1

∫
Ω

f(x, ξ + p(ξ, d))dx.

As d0 →∞, we obtain the limiting ODE

(2.10.6) ξ̇ = |Ω|−1

∫
Ω

f(x, ξ)dx.

The scalar equation (2.10.6) is gradient and, therefore, if the equilibrium points
are hyperbolic, then it is Morse-Smale and the flow for (2.10.5) is topologically
equivalent on the attractor to the one for (2.10.6) if d0 is sufficiently large.

Remark 2.10.3. Similar remarks can be made about systems. Of course, in the
remark about topological equivalence, we must include transversal intersection
of stable and unstable manifolds if it is a gradient system and Morse-Smale
otherwise.

Remark 2.10.4. If we spatiallly discretize our PDE, then we obtain a sys-
tem of ODE with the components interacting by nearest neighbor coupling.
Similar remarks about synchronization and almost synchronization apply to
these systems if the strength of the coupling is sufficiently large. For more
details, further references and other types of applications and equations, see
Hale (1996), Carvalho, Rodriguez and Dlotko (1996)).

2.10.2. Large diffusion in subdomains We begin by considering the 1D equation

(2.10.7) ut + (aν(x)ux)x = f(u) in (0, 1)
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with homogeneous Neumann boundary conditions. If the diffusion coefficient
aν is assumed to be very large when the parameter ν is small, the same type
of argument as in the previous section shows that the dynamics of (2.10.7)
is governed by the solutions of the ODE ξ̇ = f(ξ) where ξ is the average of
u. Therefore, it is reasonable to suppose that, if, for ν small, the diffusion
coefficient aν is assumed to be very large on a finite number of intervals Ij

whose complement in [0, 1] is very small, and in most of this complement the
diffusion coefficient is very small, then the solutions of (2.10.7) on the attractor
should behave essentially as the solutions of a system of ODE for a vector ξ
whose jth component ξj should correspond approximately to the average of
the solution on Ij . The vector field for the jth component should be f(ξj)
plus some diffusive coupling. These intuitive remarks have recently been made
precise by Fusco (1987), Carvalho and Perreira (1994). We now describe
their results.

For ν ∈ (0, ν0), we are going to define a positive diffusion coefficient aν ∈
C2([0, 1], lR). Let s = (s0, s1, . . . , sn), 0 = s0 < s1 < . . . < sn = 1 be a
partition of [0, 1] and let ` = (`1, . . . , `n−1), β = (β0, . . . , βn) be two sequences
of positive constants and let `′1, . . . , `

′
n−1, β′0, . . . , β

′
n be functions of ν that

approach `1, . . . , `n−1, β0, . . . , βn from above as ν → 0. Also, let `0 = `′0 = 0 =
`n = `′n and let e = (e1, . . . , en) be another sequence of positive constants. We
define aν = aν(s, `, β, e) in the following manner:

(2.10.8)

aν(x) ≥ ei
ν si−1 + ν`′i−1 ≤ x ≤ si − ν`′i

aν(x) ≥ νβi si − ν`′i ≤ x ≤ si + ν`′i

aν(x) ≤ νβ′i si − ν`i ≤ x ≤ si + ν`i

for i = 0, 1, . . . , n.
If we let

ξj(t) =
1

sj − sj−1

∫ sj

sj−1

u(x, t)dx, j = 1, 2, . . . , n,

where u(x, t) is a solution of (2.10.7) and if we assume that the equilibrium
points of (2.10.7) are hyperbolic, then it is shown in Carvalho and Perreira

(1994) (a similar result is in Fusco (1987)) that, for ν sufficiently small, the
flow on the attractor of (2.10.7) is topologically equivalent to the flow defined
by the system of ordinary differential equations

(2.10.9)

ξ̇1 = r2
j (ξ2 − ξ1) + f(ξ1),

ξ̇j = r2
j (ξj+1 − ξj) + r2

j−1(ξj−1 − ξj) + f(ξj), 2 ≤ j ≤ n− 1,

ξ̇n = r2
n−1(ξn−1 − ξn) + f(ξn),

where

(2.10.10) r2
j =

βj

2`j(sj − sj−1)
, j = 1, 2, . . . , n.
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We remark that the method of proof of this result is in the same spirit as
the simple one in the previous section. An important thing to prove (which is
nontrivial) is that, for any given compact set K in the complex plane, there are
at most n eigenvalues in K of the operator ∂

∂x(aν
∂
∂x) with Neumann boundary

conditions if ν is sufficiently small. Furthermore, there are exactly n eigenvalues
which approach zero as ν → 0. Using this fact and invariant manifold theory
leads to the above conclusion (see Carvalho and Perreira (1994) for details).

The constants rj in (2.10.10) depend upon the parameters βj , `j and sj in
the definition of the diffusion coefficient aν and may assume any real values
by changing these parameters. If the constants rj are chosen to be very large,
then the methods of the previous section show that the attractor for the ODE
(2.10.9) approaches the diagonal as the rj →∞. This implies the dynamics of
the PDE on the subdomains behave almost as the average on the subdomain
and the dynamics on the subdomains are almost synchronized if the diffusion
coefficient at the points sj are chosen in an appropriate way.

Of course, we can also choose the rj to be very small. The attractor is then
very different and the dynamics on the subdomains may be very different.

Carvalho and Cuminato (1994) have obtained similar results for a gen-
eral decomposition of two dimensional domains into subdomains for which the
diffusion coefficient is large on each subdomain but small at the boundary. This
paper also contains interesting applications to cell tissues.

2.10.3. Large diffusion in some directions – thin domains In this section, we
make a few remarks about how results of Hale and Raugel (1992) on thin
domains are related to the concept of synchronization. We restrict our atten-
tion to a thin domain over a line segment. More specifically, we consider the
equation

(2.10.11) ut −∆u = f(u) on Qε

with Neumann boundary conditions, where Qε = {(x, y) : x = εg(x), x ∈
(0, 1)}, ε > 0 is a small real parameter, g > 0 is a C3-function and f is a
C2-function satisfying some growth conditions which will ensure that we can
take the solution space to be H1(Ω). If the function f satisfies the dissipa-
tive condition (2.10.3), Hale and Raugel (1992) have shown that there is a
compact global attractor Aε which is bounded uniformly in ε > 0.

To see how this is related to synchronization, let us first suppose that g(x) ≡
1; that is, the domain is the rectangle Qε = (0, 1)× (0, ε) in lR2. If we scale the
rectangle Qε to the rectangle Q = (0, 1)× (0, 1) by the transformation x 7→ x,
y 7→ εy, then equation (2.10.11) becomes

(2.10.12) ut = uxx +
1
ε2

uyy + f(u) on Q

with homogeneous Neumann boundary conditions. The space of initial data
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for (2.10.12) is H1
ε (Q), the space H1(Q) endowed with the norm

‖ϕ‖H1
ε (Q) = (‖ϕ‖H1(Q) +

1
ε2
‖ϕy‖L2(Q))1/2.

Define the mean value operator

M : H1(Q)→ H1(0, 1), ϕ 7→Mϕ =
∫ 1

0

ϕ(·, y)dy.

If we make the transformation u = v + w, v = Mu, in (2.10.12), we obtain the
system

(2.10.13)

vt = vxx + f(v + w) on (0, 1),

wt = wxx + 1
e2 wyy + f(w)−Mf(v + w)

≡ wxx + 1
ε2 wyy + h(v, w)w on Q,

with Neumann boundary conditions. The function h(v, w) is uniformly bounded
on the attractors Aε for ε > 0.

It is not difficult to show that the eigenvalues of the operator ∂2
x + ε−2∂2

y

with Neumann boundary conditiions restricted to the space (I − M)H1
ε (Q)

approach −∞ as ε → 0. We can now use the same type of argument as in
Section 2.10.1 to show that there is an ε0 > 0 such that, for 0 < ε < ε0, if w(t)
belongs to the attractor Aε, then w(t)→ 0 as t→∞ exponentially. Since the
attractor is invariant, it follows that w = 0 on the attractor; that is, elements
of the attractor are independent of y. Thus, for 0 < ε < ε0, the system is
synchronized with respect to y.

If we allow the function g in the definition of Qε to depend upon x and scale
to Q by the transformation x 7→ x, y 7→ εg(x), then the resulting differential
equations are more complicated. However, using the same mean value operator
as above and making the change of variables u = v + w, v = Mu, Hale and
Raugel (1992) show that the proper limit equation on (0, 1) is

(2.10.14) ut −
1
g
(gux)x = f(u) in (0, 1).

Let Ã0 ⊂ H1(0, 1) be the attractor for (2.10.14) and let A0 be the natural
embedding of Ã0 into H1(Q). Hale and Raugel (1992) show that the at-
tractors {Ãε, ε ≥ 0} are upper semicontinuous at ε = 0 in the topology of
H1

ε (Q). This says that elements of the attractor Aε approach functions which
are independent of y as ε→ 0; that is, the system is almost synchronized in y.

Since transversality always holds for the 1D equation (2.10.14), it is possible
to prove that the flow on Aε is topologically equivalent to the flow on A0

provided that the equilibrium points of (2.10.12) are hyperbolic. For more
details and more general results, see Hale and Raugel (1992).
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2.10.4. Large diffusion for some components For applications modeled by sys-
tems of reaction-diffusion equations, it often happens that some diffusion coef-
ficients are very large relative to others. In such a situation, it is to be expected
that the dynamics for the components of the system with large diffusion can
be replaced by an ODE. The limiting system is called a shadow system and
was first encountered by Nishiura (1982), Fujii and Nishiura (1987) in their
study of the stability properties of equilibrium solutions of a system of two
equations modeling an ecological system. Hale and Sakamoto (1988) gave a
more complete description involving the attractors of the systems.

To be specific, let Ω ⊂ lRN be a bounded domain with smooth boundary
and consider the system

(2.10.15)
ut = d1∆u + f(u, v)
vt = d2∆v + g(u, v) in Ω

with homogeneous Neumann boundary conditions. We take u, v to be scalars,
but they could just as well be vectors of different dimensions. We assume that
the functions f, g satisfy growth conditions which will permit the discussion of
(2.10.15) in the space H1(Ω)×H1(Ω).

If we assume that d1 is fixed and that d2 is very large, then it is natural to
guess that the dynamics of (2.10.15) would approach, as d2 →∞, the dynamics
of the shadow system

(2.10.16)
ut = d1∆u + f(u, z)

ż = |Ω|−1
∫
Ω g(u(·, x), z)dx in Ω

with the function u satisfying homogeneous Neumann boundary conditions.
If we can show that this is the case, then the dynamics of the v coordinate
of the system is essentially independent of the spatial variable; that is, the v
coordinate is almost synchronized.

To state a precise result, we need some notation. If we let Z ∼= lR be
the linear space of constant functions in H1(Ω), then H1(Ω) = Z ⊕ Y , where
Y = {w ∈ H1(Ω) :

∫
Ω w(x)dx = 0}. For any v ∈ H1(Ω), we can write v = z+w,

z = Mv ≡ |Ω|−1
∫
Ω

v(x)dx, w ∈ Y . The operator M is the mean value operator
mentioned in the previous section except applied only to the variable v. We
also let X = H1(Ω)×Z and let N(δ, A) be the δ-neighborhood of a set A in a
Banach space and impose the following hypothesis:

(H) There is a compact set K ⊂ X and a constant δ0 > 0, d0
1 > 0 such

that (2.10.16) has a compact attractor Ãd1 ⊂ K, ω(N(δ0, Ãd1)) = Ãd1 for
every d1 ≥ d0

1.

If we define Ad1 = Ãd1×{0}, {0} ∈ Y , then Ad1 is a natural embedding of Ãd1

into H1(Ω)×H1(Ω). Hale and Sakamoto (1988) prove the following result.

Theorem 2.10.2. If (H) is satisfied, then there is a d2
0 > 0 such that, if

d2 ≥ d0
2, then there is a compact attractor Ad1,d2 ∈ H1(Ω)×H1(Ω) for (2.10.15)
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and, for any ε > 0, there is an η > 0 such that Ad1,d2 ⊂ N(ε,Ad1) if d2 ≥ η;
that is, the sets {Ad1 ,Ad1,d2 , d2 ≥ d0

2} are upper semicontinuous as d2 →∞.

If we assume that the flow on the attractor of (2.10.16) is structurally stable,
then it also is possible to prove that the flow for (2.10.15) is topologically
equivalent to the flow of (2.10.16) on the attractors.

We remark that a similar result can be stated for compact global attractors
if we assume that that these attractors are bounded uniformly with respect to
d1 ≥ d0

1, d2 ≥ d0
2.

The idea for the proof is very similar to the ones that we have mentioned
before. We make the transformation v = z+w in (2.10.15) and then use invari-
ant manifold theory to show that the attractor belongs to a smooth manifold
which is a graph over X × {0} ⊂ H1(Ω) × H1(Ω) represented by a function
w = h(u, z) and h(u, z)→ 0 as d2 →∞. The details require several estimates
which can be found in the above mentioned paper.

3. Autonomous - periodic boundary conditions

3.1. A Poincaré-Bendixson Theorem
In this section, we consider a reaction diffusion equation with periodic boundary
conditions or, equivalently on S1 which we take to be the diffeomorphic image
of [0, 2π). The objective is to show that a form of the Poincaré-Bendixson
Theorem is valid on the ω-limit and α-limit sets of orbits.

3.1.1. Statement of the results We consider the equation

(3.1.1) ut = uxx + f(x, u, ux), x ∈ S1,

where f ∈ C2. For the space of initial data, we choose X = H2(S1). By
standard methods, one shows that (3.1.1) defines a local semigroup T (t) on X
and, if we assume that all solutions are defined for all t ≥ 0, T (t), t ≥ 0, is a
semigroup on X , which is compact for t > 0.

Specific conditions on f which will ensure that these conclusions are valid
are the existence of a constant 0 < γ < 2, and a continuous function C(r),
0 ≤ r <∞, such that, for x ∈ S1,

(3.1.2) |f(x, u, p)| ≤ C(|u|)(1 + |p|γ)

and the existence of a positive constant K such that

(3.1.3) uf(x, u, 0) < 0, |u| ≥ K.

The condition (3.1.2) assures that solutions will not blow up in finite time and
the condition (3.1.3) is a dissipative condition which not only implies that the
semigroup T (t) is well defined for t ≥ 0, but implies that it possesses a global
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attractor A. The set E of equilibrium points of the equation are the solutions
of the equation

(3.1.4) 0 = uxx + f(x, u, ux), x ∈ S1,

For separated boundary conditions, we have seen in Section 2.1 that the ω-
limit set of any bounded orbit is a singleton. For periodic boundary conditions,
there may be other minimal sets. In fact, it is possible to have a closed orbit
which is generated by a solution which is periodic in time. For example, the
linear equation

(3.1.5) ut = uxx + ux + u, x ∈ S1,

has the solution cos (t + x) of period 2π. This solution also is called a rotating
wave of wave speed 1.

The following general result is due to Fiedler and Mallet-Paret (1989).

Theorem 3.1.1. If γ+(u0) is bounded, then ω(u0) satisfies exactly one of the
following alternatives:

(i) ω(u0) is a periodic orbit,
(ii) α(v0) ⊂ E and ω(v0) ⊂ E for each v0 ∈ ω(u0).

In particular, the Poincaré-Bendixson property holds on the ω-limit sets of
trajectories in the sense that it is either a periodic orbit or consists of homoclinic
or heteroclinic orbits connecting equilibrium points.

For f = f(u, ux) independent of x, we say that a solution u of (3.1.1)
is a rotating wave of wave speed c 6= 0 if it can be represented in the form
ϕ(x + ct). It is clear that any rotating wave is a periodic solution of (3.1.1).
For f independent of x, Massatt (1986) proved a version of Theorem 3.1.1
which stated that, for any u0 ∈ X , either ω(u0) is a single periodic orbit or a
set of equilibria which differ only by shifting x (a standing wave). The same
result was proved by Matano (1988), who further showed that ω(u0) is a single
equilibrium if f(u, ux) = f(u,−ux). Independently, assuming that f(u, ux) is
analytic, Angenent and Fiedler (1988) proved a weaker version of Theorem
3.1.1 which stated that, if v0 ∈ ω(u0), then ω(v0) and α(v0) contains a periodic
orbit or an equilibrium point. Under these same hypotheses, they also showed
that every periodic orbit of (3.1.1) is a rotating wave.

If f = f(u, ux) is independent of x, then we can transform (3.1.1) to rotating
coordinates w(t, x) = u(t, x + ct) to obtain the equation

(3.1.6) wt = wxx + f(w, wx) + cwx, x ∈ S1.

In this way, stationary solutions become rotating waves (for c 6= 0). Applying
Theorem 3.1.1 to (3.1.6) yields the result of Massatt (1986) that ω(u0) is
a single periodic orbit if it contains any periodic solution at all. Under the
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additional symmetry condition of Matano (1988), there can be no periodic
solutions of (3.1.1) and therefore ω(u0) is an equilibrium solution up to an x
shift. By additional symmetry arguments, Matano (1988) shows that it is a
single equilibrium point.

The similarity between (3.1.1) and planar systems can be made more precise
in the following way. For any x0 ∈ S1, define the projection

πx0 : X → lR2

ϕ 7→ πx0(ϕ) = (ϕ(x0), ϕx(x0)).

Theorem 3.1.2. If γ+(u0) is bounded, then πx0 : ω(u0) → lR2 is a homeo-
morphism onto the compact subest πx0ω(u0) of lR2.

For any x0, x1 ∈ S1, the sets πx0ω(u0) and πx1ω(u0) are homeomorphic by the
homeomorphism πx1π

−1
x0

. In fact, the induced flows on πx0ω(u0) and πx1ω(u0)
are topologically conjugate through this homeomorphism.

We emphasize that Theorem 3.1.2 applies only to the ω-limit sets of an
orbit and not to the global attractor if it exists. In fact, the global attractor
contains all of the unstable sets of equlibrium points and periodic orbits and
is, in general, not a two dimensional object.

It is not even true that an orbit whose limit set is a periodic orbit is injective
by the projection π. In fact, (3.1.5) has the solution

u(t, x) = cos(t + x) + e−3t cos 2(t + x)

and, for x0 = 0,

π0u(t, ·) = (cos t,− sin t) + e−3t(cos 2t,−2 sin 2t).

Obviously, π0u(t, ·) intersects itself as well as its ω-limit set at arbitrarily large
times.

3.1.2. An abstract version for semigroups Fiedler and Mallet-Paret (1989)
have given axioms for an abstract class of semigroups for which Theorems 3.1.1
and 3.1.2 are true. In addition to being applicable to other types of systems,
the proofs in the abstract setting make the arguments more transparent and
simpler.

Suppose that T (t) : X → X , t ≥ 0, is a C0-semigroup with the property that
T (t) is compact for t > 0. For simplicity in notation, we let u(t) = u(t, u0) =
T (t)u0 or, sometimes, if another symbol is needed, v(t) = T (t)v0, etc. and
refer to these functions as solutions. If u(t, u0) is a solution, we suppose that,
for t > 0, ut(t, u0) exists and depends continuously on t, u0. If v0 ∈ ω(u0),
then we know that negative orbits exist through v0 but we do not assume that
they are unique. Therefore, when we speak of α(v0), we understand that we
are speaking of the α-limit set of any negative orbit through v0.
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We suppose that there exist maps

z : X → {0, 1, 2, . . . ,∞}

π : X → lR2, linear

such that the following axioms hold for any solutions u1(t), u2(t):

(A0) (Finiteness) z(u1(t)− u2(t)) is finite for t > 0.
(A1) (z-dropping) If t0 > 0 and π(u1(t0) − u2(t0)) = 0, then either u1(t0) −

u2(t0) = 0 or the map t 7→ z(u1(t)− u2(t)) drops strictly at t0; that is, for
any ε > 0, z(u1(t0 + ε)− u2(t0 + ε)) < z(u1(t0 − ε)− u2(t0 − ε)).

(A2) (Continuity) If the map t 7→ z(u1(t) − u2(t)) does not drop strictly at
t0 and if u1(t0) − u2(t0) 6= 0, then z is locally constant; that is, there
exists a neighborhood u of u1(t0) − u2(t0) in X such that, for any ϕ ∈ U ,
z(ϕ) = z(u1(t0)− u2(t0)).

(A3) (Regularity) Axioms (A0)-(A2) hold with ut replacing u1(t)−u2(t), where
u(t) = T (t)u0 for any u0 ∈ X .

If Axioms (A0)-(A4) are satisfied, Fiedler and Mallet-Paret (1989)
show that Theorems 3.1.1 and 3.1.2 are true.

For the scalar parabolic equation (3.1.1), the map π is the one defined above
and the map z is the zero number of a function; that is, z(ϕ) is the number
of zeros of the function ϕ(x) in the interval [0, 2π). We have remarked before
that z(u(t)) is a nonincreasing function of t for any solution of (3.1.1). The
fact that there is strict dropping of z(u(t)) at t0 if there is a multiple zero is a
consequence of Angenent (1988). The fact that the axioms are satisfied for
the differences of two solutions as well as the derivative also is a consequence
of Angenent (1988) if we study the corresponding linear equations for which
these functions are solutions.

Certain types of cyclic systems of ODE also satisfy these axioms. The
following cyclic system was considered by Mallet-Paret and Smith (1990):

(3.1.7) u̇j = fj(uj , uj−1), j (mod n),

where each function fj : lR2 → lR is C1 and there are constants δj ∈ {−1, +1}
such that

∏n
j=1 δj = 1 and

(3.1.8) δjD2fj(ξ, η) > 0, for all ξ, η, j,

where D2 represents differentiation with respect to the second argument. The
integer valued map z associated with this system is defined by z(0) = 0 and,
for u = (u1, . . . , un) 6= 0,

z(u) = card { j : ∃k ≥ 1 with ujuj−k 6= 0,

uj−i = 0, 1 ≤ i ≤ k − 1,
∏j−k+1

i=j δj − i < 0}.
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In case uj 6= 0 for all j, then

z(u) = card {j : δjujuj−1 < 0}.

The map π : lRn → lR2 is defined by πu = (uj−1, uj) for some fixed j.
It is possible to show that (A0)–(A3) hold for (3.1.7) with this definition of

z, π.
Another interesting class of ODE has been considered by Fusco and Oliva

(1990)). Let e be a given basis for lRn. We let L(e) be the subset of of the
bounded linear operators on lRn with the property that, for any L ∈ L(e), the
matrix representation of L in the basis e has the form

(3.1.9) L =



a1 b1 0 . . . 0 c1

c2 a2 b2 . . . 0 0
0 c3 a3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . an−1 bn−1

bn 0 0 . . . cn an


where

(3.1.10) bj ≥ 0, cj ≥ 0, 1 ≤ j ≤ n,
n∏

j=1

bj + πn
j=1cj > 0.

With this notation, Fusco and Oliva (1990) consider the set of ODE

(3.1.11) u̇ = f(u), Df(u) ∈ L(e).

Any ODE of the form (3.1.11) is a special case of a cooperative system (a coop-
erative system only requires that the off diagonal terms of the Jacobian matrix
are non-negative). These systems are monotone (Hirsch (1983), (1988)).

The system (3.1.11) includes systems obtained by spatial discretization of
(3.1.1). It also includes some of the cyclic systems considered above; namely,
those for which each δj = 1, 1 ≤ j ≤ n.

If we define the maps z and π as before, then it is possible to show that
(A0)–(A3) are satisfied. Therefore, Theorems 3.1.1 and 3.1.2 are satisfied.

For system (3.1.11), Fusco and Oliva (1990) proved in addition that the
stable and unstable manifolds of two hyperbolic periodic orbits always are
transversal (another analogy with the Poincaré-Bendixson Theorem). It is
feasible that the same result is true for (3.1.1).

3.2. Index and connecting orbits
In this section, we consider (3.1.1) with the function f independent of x and
analytic in u, ux; that is, the equation

(3.2.1) ut = uxx + f(u, ux), x ∈ S1,
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where f is analytic.
From the previous section, the only miminal sets of (3.2.1) are either peri-

odic orbits or equilibrium points. Furthermore, every periodic orbit is either
a rotating wave or a standing wave. If we assume that (3.1.2), (3.1.3) are sat-
isfied, then there is a compact global attractor A for (3.2.1). If we let M be
the set consisting of all of the equilibrium points, rotating waves and standing
waves and assume that each element ψ ofM is hyperbolic, then

A = ∪ψ∈MWu(ψ),

where Wu(ψ) is the unstable manifold of ψ.
For the system (3.2.1), Angenent and Fiedler (1988) give some more

detailed information about the behavior of the solutions on the global attractor
A including the index of rotating waves and connecting orbits. We describe
briefly their results.

3.2.1. Index of rotating waves Recall that the zero number z(ϕ) of ϕ ∈ X is
the number of sign changes of ϕ, not counting multiplicity; that is, z(ϕ) is the
maximal integer n such that there exist 0 ≤ xn+1 = x0 < x1 < · · · < xn < 2π
with ϕ(xi)ϕ(xi+1 < 0, 0 ≤ i ≤ n.

The discussion of the index of a minimal set of (3.2.1) involves knowledge of
the spectrum of the linear variational operator about an orbit describing this
set. Since these minimal sets are either rotating waves or equilibrium points,
this involves the consideration of a linear equation of the form

(3.2.2) vt = vxx + a(t, x)vx + b(t, x)v, x ∈ S1.

If the minimal set is an equilibrium point, then the coefficients are inde-
pendent of t. If the minimal set corresponds to a rotating wave, then the
coefficients are periodic in t of some period ω. In any case, the index of the
minimal set is determined by an investigation of the spectrum of the Poincaré
map T : X → X, v0 7→ v(·, ω, v0) for some ω > 0, where v(x, t, v0) is the
solution of (3.2.2) with initial value v0 at t = 0.

The map T is compact and the spectrum of T consists of the element 0
and eigenvalues λj , j = 0, 1, 2, . . . , of finite multiplicity which we can order
as |λj | ≥ |λj+1| and they are repeated in the sequence according to their
multiplicity.

Angenent and Fiedler (1988) prove the following results.

Theorem 3.2.1. For all j ≥ 0, |λ2j | > |λ2j+1|. Therefore, λ0 is an isolated
real simple eigenvalue with eigenspace E0 of dimension 1 and, for each j ≥ 1,
{λ2j−1, λ2j}, is a spectral set with real generalized eigenspace E2j of dimension
2.

Theorem 3.2.2. Any nonzero u ∈ E2j has only simple zeros and z(u) = 2j.
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The proof of these results uses the fact that the zero number of a solution is
nonincreasing in t to first prove that the zero number is finite for any function in
the generalized eigenspace of those eigenvalues which have the same modulus.
The next step is to observe that the theorems are true if a = 0 = b and then
to use a homotopy argument replacing (a, b) by (θa, θb), 0 ≤ θ ≤ 1 to obtain
the general result. This is accomplished by showing that the zero number is
continuous in θ and therefore must remain constant.

Corollary 3.2.1. For any rotating or standing wave ϕ of (3.2.1),

i(ϕ) ∈ [z(ϕx)− 1, z(ϕx)].

In particular, each such wave is unstable.

The instability of rotating waves follow from more general results on monotone
systems. In fact, it is known that, for almost all initial data, the ω-limit set
is a singleton and thus an equilibrium point. Therefore, all periodic orbits of
(1.1) are unstable (see, for example, Hirsch (1983)).

3.2.2. Connecting orbits To state a precise result, suppose that ψ ∈ M is
hyperbolic with i(ψ) > 0 and define w± ∈ X by the relations

(3.2.4)
w+ = inf{w > ψ : w is an equilibrium point}
w− = inf{w < ψ : w is an equilibrium point}

Then it can be shown that w+ and w− are well defined, are homogeneous steady
states with index zero (stable), w− < ψ < w+, and there is an orbit connecting
ψ to w+ and an orbit connecting ψ to w−.

The following result gives information about some of the connecting orbits.

Theorem 3.2.3. Suppose that f in (3.2.1) is analytic and each element of
M is hyperbolic. For ψ ∈ M, i(ψ) > 0, define w± by (3.2.4). If k is an
integer 0 < 2k ≤ i(ψ), then there exists a wk ∈ M such that w− < wk < w+,
z(wk − ψ) = 2k, and there is an orbit connecting ψ to wk.

3.2.3. An example Let us consider a specific example from Angenent and
Fiedler (1988) for which there exist many rotating waves. Consider the equa-
tion

(3.2.5) ut = εuxx + f(u)x + g(u), x ∈ S1,

where ε > 0 is a parameter,

(3.2.6) f(u) =
1
3
u3, g(u) = u(1− (δu)2),
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where δ > 0 is a small constant. The term δ2u3 in h is introduced only to make
the system dissipative and will not play a role in the following construction of
rotating waves.

A rotating wave ϕ of (3.2.5) with speed c is a periodic solution of the
equation

εϕxx + [(f(ϕ) + cϕ]x + g(ϕ) = 0

or the equivalent system

(3.2.7)
εϕx = ψ − fc(ϕ)

ψx = −g(ϕ),

where fc(u) = f(u) + cu.
If we set δ = 0, equation (3.2.7) is the classical van der Pol equation. For

c < 0, there is a unique periodic solution of this equation for each ε > 0. If
ε > 0 is small, this periodic solution is a relaxation oscillation following the
curve ψ = fc(ϕ) most of the time, except for two rapid transition layers of
width O(ε2/3). The minimal period of the solution is given by

(3.2.8) pε = −(3− 2 log 2)c + O(ε2/3)

and the amplitude is approximately 2c2/3. For δ small, these solutions will still
exist and correspond to rotating waves for equation (3.2.5). There will be a
finite number of rotating waves with wave speed

cm = − 2π

3− 2 log 2
· 1
m

+ o(1),

where m is an integer satisfying 1 < m ≤ Mε, where Mε → ∞ as ε → 0. The
upper bound occurs because of the expression for the period pε in (3.2.8). The
corresponding rotating wave ϕm has 2m rapid transition layers, z(ϕm) = 2m.
Also, i(ϕm) = 2m − 1 by Corollary 3.2.1. Because of the uniqueness of the
periodic orbit of (3.2.7), these are the only rotating waves that can occur in
(3.2.6). As a consequence of Theorem 3.2.3, there is a connecting orbit between
ϕm and each wave ϕj with j < m and a connecting orbit between ϕm and
each of the equilibrium points +1/δ and −1/δ. This illustrates some of the
complexity of the flow on the attractor. In particular, we see that a periodic
orbit can be heteroclinic to more than two other periodic orbits.

3.3. Small viscosity limit of an inhomogeneous conservation law
In this section, we consider a differential equation for a conservation law with
a source term

(3.3.1) ut + f(u)x = g(u), x ∈ S1,

as well as the equation with a small viscosity term

(3.3.2) ut − εuxx + f(u)x = g(u), x ∈ S1.

We assume that the functions f , g satisfy the following hypotheses:

297



(H1) f ∈ C2(lR, lR), f ′′(u) > f0 > 0.
(H2) g(u) has finitely many zeroes, a1 < a2 < . . . < a2k+1, all simple; and

there is a constant M0 > 0 such that

(3.3.3) ug(u) < 0 for |u| > M0.

Remark 3.3.1. We emphasize that the function f in (3.3.1), (3.3.2) is strictly
convex and so we are not discussing the same equation as in (3.3.3) in spite of
the apparent similarity. The function f(u) in (3.3.3) is a cubic and therefore
is not convex. It is an interesting problem to see to what extent the results to
be given below hold without the assumption of convexity. Partial results are
in Lyberopoulos (1990).

3.3.1. Dynamics of inhomogeneous conservation laws For (3.3.1), the initial
data u0 is assumed to be in the space

BV (S1) = { u ∈ L1(S1) : ux is a finite measure on S1 }

of functions of bounded variation on S1. Under the hypothesis (H1), a solution
u(x, t) of (3.3.1) is said to be an admissible solution if, for almost all t > 0,
the right and left hand limits of u(x, t) with respect to x exist and satisfy the
entropy condition

(3.3.4) u(x−, t) ≥ u(x+, t) .

It is known that the initial value problem has a unique weak admissible so-
lution u(x, t) with the property that u ∈ C0((0, ∞) : L1(S1)), u(·, t) ∈ BV(S1)
(see, for example, Kruzkov (1970), Vol’pert (1967)). We consider only ad-
missible solutions and, for any u0 ∈ BV (S1), we let u0(·, t, u0) ≡ Φ0(t)u0 be
the solution of (3.3.1) with initial data u0.

Since BV(S1) ⊂ Lp(S1) for any 0 < p < +∞, we can discuss the flow
defined by (3.3.1) in Lp(S1) ∩ BV(S1). We consider convergence of this flow
in the topology of Lp(S1) and emphasize this by writing the ω-limit set of a
subset B of BV(S1) as ωLp(B) = ∩τ≥0ClLp∪t≥τ Φ0(t)B. We define α-limit sets
αLp , attractors, etc. in a similar way. Since BV (S1) is compactly embedded
in Lp(S1), 0 < p < ∞, it follows that the set {∪t≥0Φ0(t)B} being bounded
implies that it is relatively compact in Lp(S1) and, thus, ωLp(B) is compact
and invariant. The same remark applies to α-limit sets.

We say that ψ : lR → lR is a traveling wave solution of (3.3.1) with wave
speed c if ψ(x − ct) is a solution of (3.3.1) for all (x, t) ∈ S1 × lR. We say
that ωLp(u0) is a traveling wave with wave speed c of (3.3.1) if there is a real
constant c and a traveling wave solution ψ : lR → lR of (3.3.1) such that, for
any ϕ ∈ ωLp(u0), there is a constant dϕ such that u0(x, t, ϕ) = ψ(x− ct+ dϕ).
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The following result on ω-limit sets for orbits of (3.3.1) has been proved by
Fan and Hale (1993), Lyberopoulos (1994).

Theorem 3.3.1. If (H1), (H2) are satisfied and u(x, t) is an admissible solu-
tion of (3.3.1), then, for any 0 < p < +∞, ωLp(u(·, 0)) exists and is either one
of the zeros of g or a traveling wave with wave speed f ′(a2m), where m = m(u0)
depends upon u(·, 0) ≡ u0.

For the globally defined and bounded solutions of (3.3.1), Fan and Hale

(1995) obtained the following result. Theorem 3.3.2. Let A0 be the set of
ϕ ∈ BV (S1) such that, the solution Φ0(t)ϕ of (3.3.1) is defined and bounded
in BV (S1) for t ∈ lR. Then, for any 0 < p < +∞, and any ϕ ∈ A0, αLp(ϕ)
and ωLp(ϕ) exist and are either an equilibrium point or a traveling wave. Fur-
thermore, A0 is a global attractor in Lp(S1); that is, A0 is invariant, and, for
any bounded set B ⊂ BV(S1),

distLp(S1)(Φ0(t)B,A0)→ 0 as t→∞.

Fan and Hale (1995) show that it is possible to give a more complete charac-
terization of relationships between the α-limit set and ω-limit set of an orbit.
To describe the result, we need some additional notation. If uc(x, t) is a solu-
tion of (3.3.1) which exists for t ∈ lR and ϕ(x − ct) is a traveling wave such
that uc(x, t) − ϕ(x − ct) → 0 as t → ∞, then we say that uc(x, t) connects to
ϕ at t = +∞. Similarly, if there exists a traveling wave ψ(x − ct) such that
uc(x, t)−ψ(x− ct)→ 0 as t→ −∞,then we say that uc(x, t) connects to ψ at
t = −∞. For any function ϕ on S1 ∼= [0, 2π), we define the oscillation number
Card Nϕ as the cardinal number of the set

Nϕ = { x ∈ S1 : ϕ(x+) = ϕ(x−) = 0 }.

Theorem 3.3.3.

(i) Any element of A0 must connect at t = +∞ to either a travelling wave or
a constant ∈ {a1, . . . , a2k+1}.

(ii) If uc(x, t) is not a traveling wave and connects to a nonconstant traveling
wave ϕ of (3.3.1) at t = +∞ with speed f ′(a2m) for some m ∈ {1, . . . , k},
then uc(x, t) must connect to either a traveling wave ψ of (3.3.1) at t = −∞
with the same speed or ϕ must connect to a constant solution ψ ≡ a2m at
t = −∞. Furthermore, Card Nϕ−a2m ≤ Card Nψ−a2m .

(iii) If uc(x, t) connects to a constant b at t = +∞ and uc(x, t) 6= b for all x, t,
then b = a2m+1 for some m and uc(x, t) connects at t = −∞ to a traveling
wave ψ with speed either f ′(a2m) or f ′(a2m+2).

3.3.2. Viscosity limit of the attractors In this subsection, we discuss some
relationships between the flow defined by (3.3.1) and the flow defined by (3.3.2).
The space of initial data for (3.3.2) is taken to be the set of functions in H2(S1).
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For any u0 ∈ H2(S1), we let uε(·, t, u0) ≡ Φε(t)u0 denote the solution of (3.3.2)
with initial data u0. The mapping Φε(t), t ≥ 0 is a C0-semigroup on H2(S1)
and is compact for t > 0.

For the semigroup Φε(t) on H2(S1), we can define the positive orbit γ+(B)
of a subset B of H2(S1), the ω-limit set ωH2(B) of B, invariant sets and the
global attractor for the semigroup Φε(t). As we have noted above, the global
attractor Aε exists for (3.3.2). Furthermore, for any ϕ ∈ Aε, either ωH2(ϕ) is a
traveling wave or αH2(ϕ) and ωH2(ϕ) belongs to the set of equilibrium points
of (3.3.2) (see Theorem 3.1.1).

The ultimate goal would be to prove that the limit of Aε as ε→ 0 is equal
to A0. At this time, only partial results have been achieved. More precisely,
Fan and Hale (1995) have proved the following result.

Theorem 3.3.4. Assume the hypotheses (H1), (H2).

(i) For any set B = {uε(x, t), 0 < ε ≤ ε0} of connecting orbits of (3.3.2), there
is a subsequence {uεn(x, t)} of B converging to u(x, t) a.e. in S1 × lR as
n→∞ and u(x, t) is a connecting orbit of (3.3.1).

(ii) For any set {ϕε(x− cεt), 0 < ε ≤ ε0} of traveling wave solutions of (3.3.2),
there is a subsequence {ϕεn(x− cεnt)} such that

ϕεn(x− cεn t)− ϕ(x− ct)→ 0

a.e. in S1 × lR as n→∞, where ϕ is a traveling wave solution of (3.3.1).

We remark that dim A0 = +∞, whereas dim Aε < +∞ for each ε > 0.
Therefore, it is very interesting to know if Aε → A0 as ε → 0 in the Haus-
dorff sense. The above results almost show this fact. It only remains to show
that every element of A0 (which can have traveling waves which are discon-
tinuous) can be approximated by elements of Aε if ε is small. The bound-
ary layer problem in this discussion seems to be very interesting but nontriv-
ial.

3.4. Nonlocal reaction terms
We have seen in Section 3.2 that each rotating wave of a reaction diffusion
equation on S1 is unstable. In this section, we show that it is possible to have
a stable rotating wave if we allow the reaction term to depend upon a nonlocal
term. We recall that such situations can arise if we consider systems of two
equations for which one of the diffusion coefficients is large compare with the
other; that is, shadow systems. In analogy with the discussion in Section 2.8, it
is only necessary to show that it is possible to obtain a primary Hopf bifurcation
from a stable equilibrium when we include nonlocal terms. As a consequence,
we need only to point out how the eigenvalues of a linear equation depend upon
these nonlocal terms.

We consider only the simplest eigenvalue problem

(3.4.1) vxx + αv + β
1
2π

∫ 2π

0

v(y) dy + γvx = µv, x ∈ S1 ' [0, 2π),
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where α, β, γ are constants, γ > 0, and µ is the eigenvalue parameter. Since v
is 2π-periodic, we can insert the Fourier series for v to obtain the eigenvalues

µ0 = α + β, µ±n = −n2 + α± iγ, n ≥ 1,

with each eigenvalue being simple with a basis for the eigenvectors correspond-
ing to µ0 being the constant function 1 and a real basis for the span of the
eigenvalues {µ−n , µ+

n } being {sin nx, cos nx}.
If (3.4.1) corresponds to the linear variational equation about a constant

solution of a nonlinear equation, then we are interested in the point in the
α, β plane at which the first bifurcation can occur; that is, the points α, β for
which there are eigenvalues on the imaginary axis and all other eigenvalues
have real parts < 0. Since Re µn = −n2 + α for n ≥ 1, we have Re µ1 > Re µn

for n ≥ 2. Therefore, we are interested in those values of α, β on the sets
Ω0 = {α, β : α = −β, α ≥ 1} and Ω1 = {α = 1,−∞ < β ≤ −1}. On Ω1, there
is Hopf bifurcation which leads to a stable traveling wave if it is supercritical.
On Ω0, there is a bifurcation to a stable equilibria if it is supercritical.

It is easy to construct examples for which such bifurcations will be a super-
critical Hopf and thus obtain a stable rotating wave.

4. Nonautonomous equations

4.1. Periodic - separated boundary conditions
In this section, we consider the equation

(4.1.1) ut = uxx + f(t, x, u, ux) in Ω = (0, 1),

with the boundary conditions as in Section 2.1,

(4.1.2) αux + βu|x=0 = 0 = γux + δux|x=1,

where α, β, γ, δ are constants which can be normalized so that α2 + β2 = 1 =
γ2 + δ2. The function f is C2 and periodic in t of period ω.

We assume that there is a Banach space X (usually a space of functions
Hs(0, 1) for s respecting the boundary conditions (4.1.2)) such that the ini-
tial value problem of (4.1.1), (4.1.2), u|t=τ = ϕ ∈ X has a unique solution
T (t, τ)ϕ ∈ X which is defined for all t ≥ τ , continuous in all variables and is
C1 in ϕ. Also, we suppose that, if B is a bounded set in X , then the closure
of T (t, τ)B is compact if t > τ .

The Poincaré map π : X → X of (4.1.1), (4.1.2) is defined to be πϕ =
T (ω, 0)ϕ, ϕ ∈ X . Fixed points of π are in one-to-one correspondence with the
solutions of (4.1.1), (4.1.2) which are ω-periodic in t. We denote the fixed point
set of π by Fix(π).

If ϕ ∈ X , we let γ+
π (ϕ) = {πnϕ, n ≥ 0} be the positive orbit of ϕ under the

action of π and ωπ(ϕ) be the ω-limit set of ϕ under π. Similarly, we define the
negative orbit γ−π (ϕ) and the α-limit set απ(ϕ).
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The following result is due to Chen and Matano (1989) for f = f(t, u)
and to Brunovsky, Poláčik and Sanstede (1992) for the general case.
The proof depends heavily upon the nonincrease of the zero number z(u) for
solutions of linear 1D parabolic nonautonomous equations.

Theorem 4.1.1. If γ+
π (ϕ) (resp. γ+

π (ϕ)) is bounded, then ωπ(ϕ) (resp. απ(ϕ))
is a singleton in Fix(π).

Remark 4.1.1. If we assume that the function f in (4.1.1) is independent of t,
then we have seen in Section 2.1 that the system is a gradient system and the
ω-limit set of any bounded orbit is an equilibrium point. Theorem 4.1.1 says
that each bounded solution of the 1D equation (4.1.1) approaches a periodic
solution of the same period as f ; that is, a harmonic solution.

Remark 4.1.2. As we have noted in Chapter 1, if π : X → X is a general
discrete dynamical system which is compact and point dissipative, then there
is a compact global attractor Aπ which is connected and Fix(π)6= ∅. Theorem
4.1.1 for the scalar 1D equations asserts that the only minimal sets of π are in
Fix(π). For the time periodic N-D equation,

(4.1.3)
ut −∆u = f(t, x, u,∇u) in Ω

∂u

∂n
= 0 in ∂Ω

with Ω ⊂ lRN having a smooth boundary, this property may not hold. A
subharmonic solution of (4.1.3) is a solution which is periodic of minimal period
nω where n > 1. Dancer and Hess (1994), Takáč (1991) have shown that
there can be stable subharmonic solutons even for the case where the function
f in (4.1.3) is independent of ∇u. Poláčik and Tereščák (1991) have shown
that the ωπ-limit set of most solutions is a subharmonic solution and these
limiting solutions are linearly stable. This is the analogue of most solutions
converging to equilibrium in the autonomous case.

Let us assume now that there is a compact global attractor Aπ for the
Poincaré map π. If we assume that each ϕ ∈ Fix (f) is hyperbolic, then
Theorem 4.1.1 implies that

Aπ = ∪ϕ∈Fix (f)W
u
π (ϕ),

where Wu
π (ϕ) is the unstable manifold of ϕ.

If ϕ ∈ Fix (π), then the Floquet multipliers of ϕ, λj(ϕ), are defined to be
the nonzero elements of the spectrum of π′(ϕ). The following analogue of the
Sturm-Liouville theory for linear second order ODE is due to Chen, Chen and
Hale (1992), Chow, Lu and Mallet-Paret (1994) and plays an essential
role in the understanding of the global flow defined by π.

Theorem 4.1.2. If ϕ ∈ Fix (π), then the Floquet multipliers are real and sim-
ple, λ1(ϕ) > λ2(ϕ) > · · · > λn(ϕ) > · · ·, λn(ϕ) → 0 as n → ∞. Furthermore,
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the corresponding eigenfunction ϕn of λn has only simple zeros in (0, 1) and
z(ϕn) = n− 1.

Chow, Lu and Mallet-Paret (1994) have shown that the complete Floquet
theory holds for linear periodic 1D scalar parabolic equations with Dirichlet
boundary conditions; that is, given a linear equation of the form (4.1.1) with
Dirichlet boundary conditions, there is a periodic transformation of variables in
the function space which takes the equation into a linear 1D parabolic equation
with constant coefficients. The proof of this result involves first diagonalizing
the system using the Floquet solutions mentioned above and then using in-
verse scattering theory of Gel’fand, Levitan and Marchenko. Verifcation that
the Floquet exponents asymptotically satisfy the conditions of scattering the-
ory involves many nontrivial and remarkable estimates. The diagonalization
process is true for much more general dependence on t (see Chow, Lu and
Mallet-Paret (1995)). In this latter paper, periodic and Neumann bound-
ary conditions also are discussed.

As in the autonomous case, Theorem 4.1.2 plays an important role in prov-
ing the following result of Chen, Chen and Hale (1992).

Theorem 4.1.3. If ϕ ∈ Fix (π), ψ ∈ Fix (π) are hyperbolic, then Wu
π (ϕ) is

transversal to W s
π(ψ).

Theorem 4.1.3 is fundamental in the proof given by Chen, Chen and Hale

(1992) of the Morse-Smale property.

Theorem 4.1.4. If π possesses a compact global attractor and the fixed points
of π are hyperbolic, then π is Morse-Smale and thus structurally stable.

A point ϕ ∈ Aπ is chain recurrent if, for any ε > 0, there are an integer k ≥ 1
and points ϕ0, ϕ1, . . . , ϕk ∈ Aπ such that |πϕi−ϕi+1| < ε for 0 ≤ i < k. Chen

and Poláčik (1995) have proved the following result.

Theorem 4.1.5.

(1) For any ε > 0, there is a Morse decomposition {Ai
π}i∈I of Aπ such that

dist (∪i∈IAi
π, Fix (π)) < ε

and each Morse set is either a one point set or a C1 one dimensional
submanifold with boundary embedded in X.

(2) The recurrent set of π is Fix (π).
(3) π is gradient-like; that is, there is a continuous Lyapunov function V :
Aπ → lR such that, for any ϕ ∈ Aπ \ Fix (π), V (πϕ) < V (ϕ).

It would be very desirable to have a complete discussion of each of the problems
that we considered in Chapter 2 when the vector field is allowed to depend
periodically in time. At this time, there are a few general results with the
following important one on stability due to Hess (1987).
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Theorem 4.1.6. If the function f in (4.1.1) is spatially independent and
we impose homogeneous Neumann boundary conditions, then the only stable
ω-periodic solutions of the system are spatially homogeneous.

Remark 4.1.3. For the system (4.1.3) with f = f(t, u,∇u) and Ω ⊂ lRN

convex with a smooth boundary, Hess (1987) has shown that the only stable
subharmonic solutions are spatially homogeneous. Since the spatially homoge-
neous solutions are solutions of the scalar ODE u̇ = f(t, u, 0), it follows that
the only stable subharmonic solutions are harmonics; that is, ω-periodic.

Hess (1992) has obtained some interesting results for a generalization of
the Fisher equation (2.4.1) in several space variables and coefficients periodic
in t. Consider the equation

(4.1.4)
ut − k(t)∆u = m(x, t)h(u) inΩ
Bu = 0 in ∂Ω

where Ω ⊂ lRN is a bounded domain with smooth boundary, the boundary
operator corresponds to Dirichlet, Robin or Neumann, h is a C2 concave func-
tion (assumed to be strictly concave if B corresponds to Neumann boundary
conditions) on an interval I, where either

I = [0, a], h(0) = h(a) = 0, h′(0) > 0

or

I = [0,∞), h(0) = 0, h(s) > 0 for s > 0,
h(s)

s
→ 0 as s→∞.

The function k is positive Hölder continuous and ω-periodic and m(x, t) is
Hólder continuous on Ω̄× lR and ω-periodic in t.

The following result is due to Hess (1992). In the statement of the theorem,
we exclude the point a when mentioning stability with respect to initial data
in I if I = [0, a].

Theorem 4.1.7. Each solution of (4.1.4) converges to an ω-periodic solution
in C2(Ω̄) as t→∞.

(1) If u = 0 is linearly stable, then the trivial ω-periodic solution is globally
asymptotically stable with respect to initial conditions with values in I.

(2) If u = 0 is linearly unstable, then there is a unique positive ω-periodic
solution which is globally asymptotically stable with respect to nontrivial
initial conditions with values in I.

(2) If u = 0 is linearly neutrally stable and h(s) is not linear in some interval
[0, s∗] with s∗ > 0, then u∗ = 0 is globally asymptotically stable with respect
to nonnegative initial data with values in I. If h(s) is linear on [0, s∗] with
s∗ > 0, then there exists a a nontrivial one-parameter family {εϕ : 0 ≤
s ≤ s∗} of ω-periodic solutions and each solution of (4.1.4) with initial
conditions with values in I converges to an element of this family.
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For the case of Neumann boundary conditions, the condition of strict concavity
of f is not necessary if I = [0, a]. In this case it also is possible to have m(x, t, u)
depend upon u if it nonincreasing (see Hess and Weinberger (1990)).

For a further more detailed discussion of periodic parabolic equations as
well as many references, see Hess (1991).

4.2. Almost automorphic-separated boundary conditions
The next natural problem to consider is (4.1.1) when the dependence upon
time is almost periodic. To obtain a theory as complete as the one for periodic
coefficients, we would need to have the analogue of Theorem 4.1.2 which would
state that each bounded solution is asymptotic as t→∞ to an almost periodic
function. Unfortunately, this is not even the case for scalar ODE (see John-

son (1981) and the references therein). The appropriate class of functions to
consider which will be closed under taking limits as t → ∞ turns out to the
almost automorphic functions.

A continuous function g(t), t ∈ lR, is said to be almost automorphic if, for
any sequence tn → ∞ as n → ∞, there is a subsequence (which we label the
same) and a continuous function h(t), t ∈ lR such that g(t + tn) − h(t) → 0,
h(t − tn) − g(t) → 0 pointwise for t ∈ lR (Bochner (1962)). For any almost
automorphic function g, it is possible to define its Fourier series, but it may
not be unique and may only converge pointwise in terms of Bochner-Fejer
summation. Nevertheless, its frequency moduleM(g) can be uniquely defined.
We say that a function h is in the hull H(g) of g if there is a sequence {τn} ⊂ lR
such that τn →∞, g(t + τn)→ h(t) as n→∞ uniformly for t ∈ lR.

The following remarkable result (new even for ODE) showing that limits
of bounded solutions must be almost automorphic and not necessarily almost
periodic is due to Shen and Yi (1995). This is the analogue of Theorem 4.1.1
for periodic dependence on time.

Theorem 4.2.1. If f(t, x, u, p) is almost automorphic in t uniformly with
respect to x ∈ [0, 1] and u, p in bounded sets and u(x, t) is a solution of (4.1.1),
(4.1.2) bounded for t ≥ 0, then there is a sequence {τn}, τn → ∞ as n → ∞
and an almost automorphic function v(x, t) such that u(·, t + τn) − v(·, t) → 0
as n →∞ uniformly on compact sets of lR and v(·, t) is a solution of (4.1.1),
(4.1.2) with f replaced by some function g ∈ H(f). Furthermore, the module
M(v) of the function v is contained in M(f).

Remark 4.2.1. There are results for (4.1.3) when the coefficients in time
are almost automorphic which are analogous to the ones stated in Remarks
4.1.2, 4.1.3 for the periodic case. In fact, Shen and Li (1995) have shown
that, for any almost automorphic function which is the limit of of solutions of
(4.1.3) in the sense described in Theorem 4.2.1, there is an integer M such that
MM(g) ⊂ M(f). They also have shown that, if f = f(t, u,∇u) in (4.1.3) is
independent of x, then any linearly stable almost automorphic (almost periodic)
solution u of (4.1.3) is spatially homogeneous and is therefore a solution of
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u̇ = f(t, u, 0). Furthermore,M(u) ⊂M(f) (M = 1 in this case).

4.3. Periodic-periodic boundary conditions
In Section 3, for an autonomous 1D scalar parabolic equation on S1, we have
seen that the flow on limit sets is similar to the flow on the plane. If we allow
the coefficients to depend upon t in a periodic way, it might be expected that
the flow for the Poincaré map π restricted to limit sets might be similar to the
flow on a torus. In some cases, this is true, but the general situation is much
more complicated. The following results are due to Sanstede and Fiedler

(1992) for the equation

(4.3.1) ut = uxx + f(t, x, u, ux), x ∈ S1,

where f(t, x, u, p) is ω-periodic in t and f is a C2-function. We choose S1 to
be the homeomorphic image of [0, 1). The state space is chosen to be H2(S1)
and π represents the Poincaré map.

The ω-limit set ω(ϕ) of a the solution u(t, ·, ϕ) of (4.3.1) with initial data ϕ
at t = 0 is defined as the set of (τ, ψ) such that there is a sequence tk →∞ as
k →∞, such that τ = limk→∞ tk(mod ω), ψ = limk→∞ u(tk, ·, ϕ). The ω-limit
set ωπ(ϕ) under the Poincaré map is defined in the usual way.

Let σa : H2(S1) → H2(S1) be the shift map (σaϕ)(x) = ϕ(x + a) and
Σϕ = {σaϕ : a ∈ S1}.

Theorem 4.3.1. Let f(t, u, ux) be independent of x and ω-periodic in t. If
u(t, ·, ϕ), u(0, ·, ϕ) = ϕ, is a solution of (4.3.1) in H2(S1) which is uniformly
bounded in t, then there is a ψ ∈ ωπ(ϕ) such that ωπ(ϕ) ∈ Σψ. Moreover, there
is an α ∈ S1 such that, for each ξ ∈ Σψ, πξ = σαξ.

Since f is independent of the spatial variable x, the map π commutes with any
shift σa and, therefore, πnξ = σnαξ. As a consequence, on any ω-limit set of
(4.3.1), the action of π is linear and the flow is periodic if α is rational and
ergodic if α is irrational.

Sanstede (1993) has noted that every S1-equivariant time periodic vector
field in the plane embeds by a linear transformation into an S1-equivariant
equation (4.3.1) for a suitable f(t, u, ux). In fact, any S1-equivariant vector
field in the plane can be written as

ẏ1 = f1y1 − f2y2, ẏ2 = f2y1 + f1y2,

where fj = fj(y2
1 + y2

2), j = 1, 2. On the other hand, for the PDE

ut = uxx + f1(u2 + u2
x)u + f2(u2 + u2

x)ux,

the transformation y 7→ y1 sin x+y1 cos x from lR2 to V = span (sin x, cos x) ⊂
H2(S1) is a diffeomorphism which maps orbits onto orbits and preserves sense
of direction in time.
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If f(t, x, u, ux) does not possess S1 symmetry, then the ω-limit sets can be
at least as complicated as the ω-limit sets of time-periodically forced vector
fields in the plane. In fact, Sanstede and Fiedler (1992) prove

Theorem 4.3.2. Every two-dimensional time-periodic vector field in the plane
embeds into an equation of the form (4.3.1) for a suitable f(t, x, u, ux) by means
of a linear transformation.

This result implies that complicated dynamics may occur in parabolic equations
on the circle; in particular, one may obtain horseshoes for the Poincaré map
by considering say the linearly damped periodically forced pendulum.

In the case of autonomous equations on the circle, the periodic orbits were
always unstable and the only stable minimal sets were equilibrium points. It
would be interesting to characterize the possible ω-limit sets which can be
stable for the time periodic case on S1. If we introduce nonlocal terms in the
equation on S1, it also should be possible to increase the types of stable ω-limit
sets that can occur as we did for the autonomous case in Section 3.4?
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15. Brunovský, P. and P. Poláčik (1997). Morse-Smale structure of
generic reaction diffusion equations in higher space dimensions. J. Dif-
ferential Equations 135, 129–181.
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